Description: Extend dib2dim to isomorphism H. (Contributed by NM, 22-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dih2dimb.l | |
|
dih2dimb.j | |
||
dih2dimb.a | |
||
dih2dimb.h | |
||
dih2dimb.u | |
||
dih2dimb.s | |
||
dih2dimb.i | |
||
dih2dimb.k | |
||
dih2dimb.p | |
||
dih2dimb.q | |
||
Assertion | dih2dimb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dih2dimb.l | |
|
2 | dih2dimb.j | |
|
3 | dih2dimb.a | |
|
4 | dih2dimb.h | |
|
5 | dih2dimb.u | |
|
6 | dih2dimb.s | |
|
7 | dih2dimb.i | |
|
8 | dih2dimb.k | |
|
9 | dih2dimb.p | |
|
10 | dih2dimb.q | |
|
11 | eqid | |
|
12 | 1 2 3 4 5 6 11 8 9 10 | dib2dim | |
13 | 8 | simpld | |
14 | 9 | simpld | |
15 | 10 | simpld | |
16 | eqid | |
|
17 | 16 2 3 | hlatjcl | |
18 | 13 14 15 17 | syl3anc | |
19 | 9 | simprd | |
20 | 10 | simprd | |
21 | 13 | hllatd | |
22 | 16 3 | atbase | |
23 | 14 22 | syl | |
24 | 16 3 | atbase | |
25 | 15 24 | syl | |
26 | 8 | simprd | |
27 | 16 4 | lhpbase | |
28 | 26 27 | syl | |
29 | 16 1 2 | latjle12 | |
30 | 21 23 25 28 29 | syl13anc | |
31 | 19 20 30 | mpbi2and | |
32 | 16 1 4 7 11 | dihvalb | |
33 | 8 18 31 32 | syl12anc | |
34 | 16 1 4 7 11 | dihvalb | |
35 | 8 23 19 34 | syl12anc | |
36 | 16 1 4 7 11 | dihvalb | |
37 | 8 25 20 36 | syl12anc | |
38 | 35 37 | oveq12d | |
39 | 12 33 38 | 3sstr4d | |