Metamath Proof Explorer


Theorem dih2dimb

Description: Extend dib2dim to isomorphism H. (Contributed by NM, 22-Sep-2014)

Ref Expression
Hypotheses dih2dimb.l ˙=K
dih2dimb.j ˙=joinK
dih2dimb.a A=AtomsK
dih2dimb.h H=LHypK
dih2dimb.u U=DVecHKW
dih2dimb.s ˙=LSSumU
dih2dimb.i I=DIsoHKW
dih2dimb.k φKHLWH
dih2dimb.p φPAP˙W
dih2dimb.q φQAQ˙W
Assertion dih2dimb φIP˙QIP˙IQ

Proof

Step Hyp Ref Expression
1 dih2dimb.l ˙=K
2 dih2dimb.j ˙=joinK
3 dih2dimb.a A=AtomsK
4 dih2dimb.h H=LHypK
5 dih2dimb.u U=DVecHKW
6 dih2dimb.s ˙=LSSumU
7 dih2dimb.i I=DIsoHKW
8 dih2dimb.k φKHLWH
9 dih2dimb.p φPAP˙W
10 dih2dimb.q φQAQ˙W
11 eqid DIsoBKW=DIsoBKW
12 1 2 3 4 5 6 11 8 9 10 dib2dim φDIsoBKWP˙QDIsoBKWP˙DIsoBKWQ
13 8 simpld φKHL
14 9 simpld φPA
15 10 simpld φQA
16 eqid BaseK=BaseK
17 16 2 3 hlatjcl KHLPAQAP˙QBaseK
18 13 14 15 17 syl3anc φP˙QBaseK
19 9 simprd φP˙W
20 10 simprd φQ˙W
21 13 hllatd φKLat
22 16 3 atbase PAPBaseK
23 14 22 syl φPBaseK
24 16 3 atbase QAQBaseK
25 15 24 syl φQBaseK
26 8 simprd φWH
27 16 4 lhpbase WHWBaseK
28 26 27 syl φWBaseK
29 16 1 2 latjle12 KLatPBaseKQBaseKWBaseKP˙WQ˙WP˙Q˙W
30 21 23 25 28 29 syl13anc φP˙WQ˙WP˙Q˙W
31 19 20 30 mpbi2and φP˙Q˙W
32 16 1 4 7 11 dihvalb KHLWHP˙QBaseKP˙Q˙WIP˙Q=DIsoBKWP˙Q
33 8 18 31 32 syl12anc φIP˙Q=DIsoBKWP˙Q
34 16 1 4 7 11 dihvalb KHLWHPBaseKP˙WIP=DIsoBKWP
35 8 23 19 34 syl12anc φIP=DIsoBKWP
36 16 1 4 7 11 dihvalb KHLWHQBaseKQ˙WIQ=DIsoBKWQ
37 8 25 20 36 syl12anc φIQ=DIsoBKWQ
38 35 37 oveq12d φIP˙IQ=DIsoBKWP˙DIsoBKWQ
39 12 33 38 3sstr4d φIP˙QIP˙IQ