Step |
Hyp |
Ref |
Expression |
1 |
|
dih2dimb.l |
|
2 |
|
dih2dimb.j |
|
3 |
|
dih2dimb.a |
|
4 |
|
dih2dimb.h |
|
5 |
|
dih2dimb.u |
|
6 |
|
dih2dimb.s |
|
7 |
|
dih2dimb.i |
|
8 |
|
dih2dimb.k |
|
9 |
|
dih2dimb.p |
|
10 |
|
dih2dimb.q |
|
11 |
|
eqid |
|
12 |
4 11
|
dibvalrel |
|
13 |
8 12
|
syl |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
1 2 3 4 14 15 16 8 9 10
|
dia2dim |
|
18 |
17
|
sseld |
|
19 |
18
|
anim1d |
|
20 |
8
|
simpld |
|
21 |
9
|
simpld |
|
22 |
10
|
simpld |
|
23 |
|
eqid |
|
24 |
23 2 3
|
hlatjcl |
|
25 |
20 21 22 24
|
syl3anc |
|
26 |
9
|
simprd |
|
27 |
10
|
simprd |
|
28 |
|
hllat |
|
29 |
20 28
|
syl |
|
30 |
23 3
|
atbase |
|
31 |
21 30
|
syl |
|
32 |
23 3
|
atbase |
|
33 |
22 32
|
syl |
|
34 |
8
|
simprd |
|
35 |
23 4
|
lhpbase |
|
36 |
34 35
|
syl |
|
37 |
23 1 2
|
latjle12 |
|
38 |
29 31 33 36 37
|
syl13anc |
|
39 |
26 27 38
|
mpbi2and |
|
40 |
|
eqid |
|
41 |
|
eqid |
|
42 |
23 1 4 40 41 16 11
|
dibopelval2 |
|
43 |
8 25 39 42
|
syl12anc |
|
44 |
31 26
|
jca |
|
45 |
33 27
|
jca |
|
46 |
23 1 4 40 41 14 5 15 6 16 11 8 44 45
|
diblsmopel |
|
47 |
19 43 46
|
3imtr4d |
|
48 |
13 47
|
relssdv |
|
49 |
23 1 4 7 11
|
dihvalb |
|
50 |
8 25 39 49
|
syl12anc |
|
51 |
23 1 4 7 11
|
dihvalb |
|
52 |
8 31 26 51
|
syl12anc |
|
53 |
23 1 4 7 11
|
dihvalb |
|
54 |
8 33 27 53
|
syl12anc |
|
55 |
52 54
|
oveq12d |
|
56 |
48 50 55
|
3sstr4d |
|