Metamath Proof Explorer


Theorem dihopelvalcqat

Description: Ordered pair member of the partial isomorphism H for atom argument not under W . TODO: remove .t hypothesis. (Contributed by NM, 30-Mar-2014)

Ref Expression
Hypotheses dihelval2.l ˙ = K
dihelval2.a A = Atoms K
dihelval2.h H = LHyp K
dihelval2.p P = oc K W
dihelval2.t T = LTrn K W
dihelval2.e E = TEndo K W
dihelval2.i I = DIsoH K W
dihelval2.g G = ι g T | g P = Q
dihelval2.f F V
dihelval2.s S V
Assertion dihopelvalcqat K HL W H Q A ¬ Q ˙ W F S I Q F = S G S E

Proof

Step Hyp Ref Expression
1 dihelval2.l ˙ = K
2 dihelval2.a A = Atoms K
3 dihelval2.h H = LHyp K
4 dihelval2.p P = oc K W
5 dihelval2.t T = LTrn K W
6 dihelval2.e E = TEndo K W
7 dihelval2.i I = DIsoH K W
8 dihelval2.g G = ι g T | g P = Q
9 dihelval2.f F V
10 dihelval2.s S V
11 eqid DIsoC K W = DIsoC K W
12 1 2 3 11 7 dihvalcqat K HL W H Q A ¬ Q ˙ W I Q = DIsoC K W Q
13 12 eleq2d K HL W H Q A ¬ Q ˙ W F S I Q F S DIsoC K W Q
14 1 2 3 4 5 6 11 8 9 10 dicopelval2 K HL W H Q A ¬ Q ˙ W F S DIsoC K W Q F = S G S E
15 13 14 bitrd K HL W H Q A ¬ Q ˙ W F S I Q F = S G S E