Metamath Proof Explorer


Theorem dihvalcq2

Description: Value of isomorphism H for a lattice K when -. X .<_ W , given auxiliary atom Q . (Contributed by NM, 26-Sep-2014)

Ref Expression
Hypotheses dihvalcq2.b B = Base K
dihvalcq2.l ˙ = K
dihvalcq2.j ˙ = join K
dihvalcq2.m ˙ = meet K
dihvalcq2.a A = Atoms K
dihvalcq2.h H = LHyp K
dihvalcq2.i I = DIsoH K W
dihvalcq2.u U = DVecH K W
dihvalcq2.p ˙ = LSSum U
Assertion dihvalcq2 K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X I X = I Q ˙ I X ˙ W

Proof

Step Hyp Ref Expression
1 dihvalcq2.b B = Base K
2 dihvalcq2.l ˙ = K
3 dihvalcq2.j ˙ = join K
4 dihvalcq2.m ˙ = meet K
5 dihvalcq2.a A = Atoms K
6 dihvalcq2.h H = LHyp K
7 dihvalcq2.i I = DIsoH K W
8 dihvalcq2.u U = DVecH K W
9 dihvalcq2.p ˙ = LSSum U
10 simp1 K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X K HL W H
11 simp2 K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X X B ¬ X ˙ W
12 simp3l K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X Q A ¬ Q ˙ W
13 simp3r K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X Q ˙ X
14 1 2 3 4 5 6 lhpmcvr3 K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X Q ˙ X ˙ W = X
15 10 11 12 14 syl3anc K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X Q ˙ X Q ˙ X ˙ W = X
16 13 15 mpbid K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X Q ˙ X ˙ W = X
17 eqid DIsoB K W = DIsoB K W
18 eqid DIsoC K W = DIsoC K W
19 1 2 3 4 5 6 7 17 18 8 9 dihvalcq K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X I X = DIsoC K W Q ˙ DIsoB K W X ˙ W
20 10 11 12 16 19 syl112anc K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X I X = DIsoC K W Q ˙ DIsoB K W X ˙ W
21 2 5 6 18 7 dihvalcqat K HL W H Q A ¬ Q ˙ W I Q = DIsoC K W Q
22 10 12 21 syl2anc K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X I Q = DIsoC K W Q
23 simp1l K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X K HL
24 23 hllatd K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X K Lat
25 simp2l K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X X B
26 simp1r K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X W H
27 1 6 lhpbase W H W B
28 26 27 syl K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X W B
29 1 4 latmcl K Lat X B W B X ˙ W B
30 24 25 28 29 syl3anc K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X X ˙ W B
31 1 2 4 latmle2 K Lat X B W B X ˙ W ˙ W
32 24 25 28 31 syl3anc K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X X ˙ W ˙ W
33 1 2 6 7 17 dihvalb K HL W H X ˙ W B X ˙ W ˙ W I X ˙ W = DIsoB K W X ˙ W
34 10 30 32 33 syl12anc K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X I X ˙ W = DIsoB K W X ˙ W
35 22 34 oveq12d K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X I Q ˙ I X ˙ W = DIsoC K W Q ˙ DIsoB K W X ˙ W
36 20 35 eqtr4d K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X I X = I Q ˙ I X ˙ W