Metamath Proof Explorer


Theorem dihvalcq2

Description: Value of isomorphism H for a lattice K when -. X .<_ W , given auxiliary atom Q . (Contributed by NM, 26-Sep-2014)

Ref Expression
Hypotheses dihvalcq2.b B=BaseK
dihvalcq2.l ˙=K
dihvalcq2.j ˙=joinK
dihvalcq2.m ˙=meetK
dihvalcq2.a A=AtomsK
dihvalcq2.h H=LHypK
dihvalcq2.i I=DIsoHKW
dihvalcq2.u U=DVecHKW
dihvalcq2.p ˙=LSSumU
Assertion dihvalcq2 KHLWHXB¬X˙WQA¬Q˙WQ˙XIX=IQ˙IX˙W

Proof

Step Hyp Ref Expression
1 dihvalcq2.b B=BaseK
2 dihvalcq2.l ˙=K
3 dihvalcq2.j ˙=joinK
4 dihvalcq2.m ˙=meetK
5 dihvalcq2.a A=AtomsK
6 dihvalcq2.h H=LHypK
7 dihvalcq2.i I=DIsoHKW
8 dihvalcq2.u U=DVecHKW
9 dihvalcq2.p ˙=LSSumU
10 simp1 KHLWHXB¬X˙WQA¬Q˙WQ˙XKHLWH
11 simp2 KHLWHXB¬X˙WQA¬Q˙WQ˙XXB¬X˙W
12 simp3l KHLWHXB¬X˙WQA¬Q˙WQ˙XQA¬Q˙W
13 simp3r KHLWHXB¬X˙WQA¬Q˙WQ˙XQ˙X
14 1 2 3 4 5 6 lhpmcvr3 KHLWHXB¬X˙WQA¬Q˙WQ˙XQ˙X˙W=X
15 10 11 12 14 syl3anc KHLWHXB¬X˙WQA¬Q˙WQ˙XQ˙XQ˙X˙W=X
16 13 15 mpbid KHLWHXB¬X˙WQA¬Q˙WQ˙XQ˙X˙W=X
17 eqid DIsoBKW=DIsoBKW
18 eqid DIsoCKW=DIsoCKW
19 1 2 3 4 5 6 7 17 18 8 9 dihvalcq KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XIX=DIsoCKWQ˙DIsoBKWX˙W
20 10 11 12 16 19 syl112anc KHLWHXB¬X˙WQA¬Q˙WQ˙XIX=DIsoCKWQ˙DIsoBKWX˙W
21 2 5 6 18 7 dihvalcqat KHLWHQA¬Q˙WIQ=DIsoCKWQ
22 10 12 21 syl2anc KHLWHXB¬X˙WQA¬Q˙WQ˙XIQ=DIsoCKWQ
23 simp1l KHLWHXB¬X˙WQA¬Q˙WQ˙XKHL
24 23 hllatd KHLWHXB¬X˙WQA¬Q˙WQ˙XKLat
25 simp2l KHLWHXB¬X˙WQA¬Q˙WQ˙XXB
26 simp1r KHLWHXB¬X˙WQA¬Q˙WQ˙XWH
27 1 6 lhpbase WHWB
28 26 27 syl KHLWHXB¬X˙WQA¬Q˙WQ˙XWB
29 1 4 latmcl KLatXBWBX˙WB
30 24 25 28 29 syl3anc KHLWHXB¬X˙WQA¬Q˙WQ˙XX˙WB
31 1 2 4 latmle2 KLatXBWBX˙W˙W
32 24 25 28 31 syl3anc KHLWHXB¬X˙WQA¬Q˙WQ˙XX˙W˙W
33 1 2 6 7 17 dihvalb KHLWHX˙WBX˙W˙WIX˙W=DIsoBKWX˙W
34 10 30 32 33 syl12anc KHLWHXB¬X˙WQA¬Q˙WQ˙XIX˙W=DIsoBKWX˙W
35 22 34 oveq12d KHLWHXB¬X˙WQA¬Q˙WQ˙XIQ˙IX˙W=DIsoCKWQ˙DIsoBKWX˙W
36 20 35 eqtr4d KHLWHXB¬X˙WQA¬Q˙WQ˙XIX=IQ˙IX˙W