Step |
Hyp |
Ref |
Expression |
1 |
|
dihvalcq2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihvalcq2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihvalcq2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dihvalcq2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
dihvalcq2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
dihvalcq2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
dihvalcq2.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihvalcq2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dihvalcq2.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
10 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ 𝑋 ) ) → ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) |
12 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ 𝑋 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
13 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ 𝑋 ) ) → 𝑄 ≤ 𝑋 ) |
14 |
1 2 3 4 5 6
|
lhpmcvr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑄 ≤ 𝑋 ↔ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
15 |
10 11 12 14
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ 𝑋 ) ) → ( 𝑄 ≤ 𝑋 ↔ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
16 |
13 15
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ 𝑋 ) ) → ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) |
17 |
|
eqid |
⊢ ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
18 |
|
eqid |
⊢ ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
19 |
1 2 3 4 5 6 7 17 18 8 9
|
dihvalcq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝐼 ‘ 𝑋 ) = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ⊕ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
20 |
10 11 12 16 19
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ 𝑋 ) ) → ( 𝐼 ‘ 𝑋 ) = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ⊕ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
21 |
2 5 6 18 7
|
dihvalcqat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) = ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) |
22 |
10 12 21
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ 𝑋 ) ) → ( 𝐼 ‘ 𝑄 ) = ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) |
23 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ 𝑋 ) ) → 𝐾 ∈ HL ) |
24 |
23
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ 𝑋 ) ) → 𝐾 ∈ Lat ) |
25 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
26 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ 𝑋 ) ) → 𝑊 ∈ 𝐻 ) |
27 |
1 6
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
28 |
26 27
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ 𝑋 ) ) → 𝑊 ∈ 𝐵 ) |
29 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
30 |
24 25 28 29
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ 𝑋 ) ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
31 |
1 2 4
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) |
32 |
24 25 28 31
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ 𝑋 ) ) → ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) |
33 |
1 2 6 7 17
|
dihvalb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ∧ 𝑊 ) ) ) |
34 |
10 30 32 33
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ 𝑋 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ∧ 𝑊 ) ) ) |
35 |
22 34
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ 𝑋 ) ) → ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) = ( ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ⊕ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |
36 |
20 35
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑄 ≤ 𝑋 ) ) → ( 𝐼 ‘ 𝑋 ) = ( ( 𝐼 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑊 ) ) ) ) |