Step |
Hyp |
Ref |
Expression |
1 |
|
dihvalcq2.b |
|- B = ( Base ` K ) |
2 |
|
dihvalcq2.l |
|- .<_ = ( le ` K ) |
3 |
|
dihvalcq2.j |
|- .\/ = ( join ` K ) |
4 |
|
dihvalcq2.m |
|- ./\ = ( meet ` K ) |
5 |
|
dihvalcq2.a |
|- A = ( Atoms ` K ) |
6 |
|
dihvalcq2.h |
|- H = ( LHyp ` K ) |
7 |
|
dihvalcq2.i |
|- I = ( ( DIsoH ` K ) ` W ) |
8 |
|
dihvalcq2.u |
|- U = ( ( DVecH ` K ) ` W ) |
9 |
|
dihvalcq2.p |
|- .(+) = ( LSSum ` U ) |
10 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ X ) ) -> ( K e. HL /\ W e. H ) ) |
11 |
|
simp2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ X ) ) -> ( X e. B /\ -. X .<_ W ) ) |
12 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ X ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
13 |
|
simp3r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ X ) ) -> Q .<_ X ) |
14 |
1 2 3 4 5 6
|
lhpmcvr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q .<_ X <-> ( Q .\/ ( X ./\ W ) ) = X ) ) |
15 |
10 11 12 14
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ X ) ) -> ( Q .<_ X <-> ( Q .\/ ( X ./\ W ) ) = X ) ) |
16 |
13 15
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ X ) ) -> ( Q .\/ ( X ./\ W ) ) = X ) |
17 |
|
eqid |
|- ( ( DIsoB ` K ) ` W ) = ( ( DIsoB ` K ) ` W ) |
18 |
|
eqid |
|- ( ( DIsoC ` K ) ` W ) = ( ( DIsoC ` K ) ` W ) |
19 |
1 2 3 4 5 6 7 17 18 8 9
|
dihvalcq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( I ` X ) = ( ( ( ( DIsoC ` K ) ` W ) ` Q ) .(+) ( ( ( DIsoB ` K ) ` W ) ` ( X ./\ W ) ) ) ) |
20 |
10 11 12 16 19
|
syl112anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ X ) ) -> ( I ` X ) = ( ( ( ( DIsoC ` K ) ` W ) ` Q ) .(+) ( ( ( DIsoB ` K ) ` W ) ` ( X ./\ W ) ) ) ) |
21 |
2 5 6 18 7
|
dihvalcqat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = ( ( ( DIsoC ` K ) ` W ) ` Q ) ) |
22 |
10 12 21
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ X ) ) -> ( I ` Q ) = ( ( ( DIsoC ` K ) ` W ) ` Q ) ) |
23 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ X ) ) -> K e. HL ) |
24 |
23
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ X ) ) -> K e. Lat ) |
25 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ X ) ) -> X e. B ) |
26 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ X ) ) -> W e. H ) |
27 |
1 6
|
lhpbase |
|- ( W e. H -> W e. B ) |
28 |
26 27
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ X ) ) -> W e. B ) |
29 |
1 4
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) e. B ) |
30 |
24 25 28 29
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ X ) ) -> ( X ./\ W ) e. B ) |
31 |
1 2 4
|
latmle2 |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) .<_ W ) |
32 |
24 25 28 31
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ X ) ) -> ( X ./\ W ) .<_ W ) |
33 |
1 2 6 7 17
|
dihvalb |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( X ./\ W ) e. B /\ ( X ./\ W ) .<_ W ) ) -> ( I ` ( X ./\ W ) ) = ( ( ( DIsoB ` K ) ` W ) ` ( X ./\ W ) ) ) |
34 |
10 30 32 33
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ X ) ) -> ( I ` ( X ./\ W ) ) = ( ( ( DIsoB ` K ) ` W ) ` ( X ./\ W ) ) ) |
35 |
22 34
|
oveq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ X ) ) -> ( ( I ` Q ) .(+) ( I ` ( X ./\ W ) ) ) = ( ( ( ( DIsoC ` K ) ` W ) ` Q ) .(+) ( ( ( DIsoB ` K ) ` W ) ` ( X ./\ W ) ) ) ) |
36 |
20 35
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ X ) ) -> ( I ` X ) = ( ( I ` Q ) .(+) ( I ` ( X ./\ W ) ) ) ) |