Step |
Hyp |
Ref |
Expression |
1 |
|
dihopelvalcp.b |
|- B = ( Base ` K ) |
2 |
|
dihopelvalcp.l |
|- .<_ = ( le ` K ) |
3 |
|
dihopelvalcp.j |
|- .\/ = ( join ` K ) |
4 |
|
dihopelvalcp.m |
|- ./\ = ( meet ` K ) |
5 |
|
dihopelvalcp.a |
|- A = ( Atoms ` K ) |
6 |
|
dihopelvalcp.h |
|- H = ( LHyp ` K ) |
7 |
|
dihopelvalcp.p |
|- P = ( ( oc ` K ) ` W ) |
8 |
|
dihopelvalcp.t |
|- T = ( ( LTrn ` K ) ` W ) |
9 |
|
dihopelvalcp.r |
|- R = ( ( trL ` K ) ` W ) |
10 |
|
dihopelvalcp.e |
|- E = ( ( TEndo ` K ) ` W ) |
11 |
|
dihopelvalcp.i |
|- I = ( ( DIsoH ` K ) ` W ) |
12 |
|
dihopelvalcp.g |
|- G = ( iota_ g e. T ( g ` P ) = Q ) |
13 |
|
dihopelvalcp.f |
|- F e. _V |
14 |
|
dihopelvalcp.s |
|- S e. _V |
15 |
|
dihopelvalcp.z |
|- Z = ( h e. T |-> ( _I |` B ) ) |
16 |
|
dihopelvalcp.n |
|- N = ( ( DIsoB ` K ) ` W ) |
17 |
|
dihopelvalcp.c |
|- C = ( ( DIsoC ` K ) ` W ) |
18 |
|
dihopelvalcp.u |
|- U = ( ( DVecH ` K ) ` W ) |
19 |
|
dihopelvalcp.d |
|- .+ = ( +g ` U ) |
20 |
|
dihopelvalcp.v |
|- V = ( LSubSp ` U ) |
21 |
|
dihopelvalcp.y |
|- .(+) = ( LSSum ` U ) |
22 |
|
dihopelvalcp.o |
|- O = ( a e. E , b e. E |-> ( h e. T |-> ( ( a ` h ) o. ( b ` h ) ) ) ) |
23 |
1 2 3 4 5 6 11 16 17 18 21
|
dihvalcq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( I ` X ) = ( ( C ` Q ) .(+) ( N ` ( X ./\ W ) ) ) ) |
24 |
23
|
eleq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( <. F , S >. e. ( I ` X ) <-> <. F , S >. e. ( ( C ` Q ) .(+) ( N ` ( X ./\ W ) ) ) ) ) |
25 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( K e. HL /\ W e. H ) ) |
26 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
27 |
2 5 6 18 17 20
|
diclss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( C ` Q ) e. V ) |
28 |
25 26 27
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( C ` Q ) e. V ) |
29 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> K e. HL ) |
30 |
29
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> K e. Lat ) |
31 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> X e. B ) |
32 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> W e. H ) |
33 |
1 6
|
lhpbase |
|- ( W e. H -> W e. B ) |
34 |
32 33
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> W e. B ) |
35 |
1 4
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) e. B ) |
36 |
30 31 34 35
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( X ./\ W ) e. B ) |
37 |
1 2 4
|
latmle2 |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) .<_ W ) |
38 |
30 31 34 37
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( X ./\ W ) .<_ W ) |
39 |
1 2 6 18 16 20
|
diblss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( X ./\ W ) e. B /\ ( X ./\ W ) .<_ W ) ) -> ( N ` ( X ./\ W ) ) e. V ) |
40 |
25 36 38 39
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( N ` ( X ./\ W ) ) e. V ) |
41 |
6 18 19 20 21
|
dvhopellsm |
|- ( ( ( K e. HL /\ W e. H ) /\ ( C ` Q ) e. V /\ ( N ` ( X ./\ W ) ) e. V ) -> ( <. F , S >. e. ( ( C ` Q ) .(+) ( N ` ( X ./\ W ) ) ) <-> E. x E. y E. z E. w ( ( <. x , y >. e. ( C ` Q ) /\ <. z , w >. e. ( N ` ( X ./\ W ) ) ) /\ <. F , S >. = ( <. x , y >. .+ <. z , w >. ) ) ) ) |
42 |
25 28 40 41
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( <. F , S >. e. ( ( C ` Q ) .(+) ( N ` ( X ./\ W ) ) ) <-> E. x E. y E. z E. w ( ( <. x , y >. e. ( C ` Q ) /\ <. z , w >. e. ( N ` ( X ./\ W ) ) ) /\ <. F , S >. = ( <. x , y >. .+ <. z , w >. ) ) ) ) |
43 |
|
vex |
|- x e. _V |
44 |
|
vex |
|- y e. _V |
45 |
2 5 6 7 8 10 17 12 43 44
|
dicopelval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. x , y >. e. ( C ` Q ) <-> ( x = ( y ` G ) /\ y e. E ) ) ) |
46 |
25 26 45
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( <. x , y >. e. ( C ` Q ) <-> ( x = ( y ` G ) /\ y e. E ) ) ) |
47 |
1 2 6 8 9 15 16
|
dibopelval3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( X ./\ W ) e. B /\ ( X ./\ W ) .<_ W ) ) -> ( <. z , w >. e. ( N ` ( X ./\ W ) ) <-> ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) |
48 |
25 36 38 47
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( <. z , w >. e. ( N ` ( X ./\ W ) ) <-> ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) |
49 |
46 48
|
anbi12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( ( <. x , y >. e. ( C ` Q ) /\ <. z , w >. e. ( N ` ( X ./\ W ) ) ) <-> ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) ) |
50 |
49
|
anbi1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( ( ( <. x , y >. e. ( C ` Q ) /\ <. z , w >. e. ( N ` ( X ./\ W ) ) ) /\ <. F , S >. = ( <. x , y >. .+ <. z , w >. ) ) <-> ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ <. F , S >. = ( <. x , y >. .+ <. z , w >. ) ) ) ) |
51 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> ( K e. HL /\ W e. H ) ) |
52 |
|
simprll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> x = ( y ` G ) ) |
53 |
|
simprlr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> y e. E ) |
54 |
2 5 6 7
|
lhpocnel2 |
|- ( ( K e. HL /\ W e. H ) -> ( P e. A /\ -. P .<_ W ) ) |
55 |
51 54
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
56 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
57 |
2 5 6 8 12
|
ltrniotacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> G e. T ) |
58 |
51 55 56 57
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> G e. T ) |
59 |
6 8 10
|
tendocl |
|- ( ( ( K e. HL /\ W e. H ) /\ y e. E /\ G e. T ) -> ( y ` G ) e. T ) |
60 |
51 53 58 59
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> ( y ` G ) e. T ) |
61 |
52 60
|
eqeltrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> x e. T ) |
62 |
|
simprll |
|- ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) -> z e. T ) |
63 |
62
|
adantl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> z e. T ) |
64 |
|
simprrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> w = Z ) |
65 |
1 6 8 10 15
|
tendo0cl |
|- ( ( K e. HL /\ W e. H ) -> Z e. E ) |
66 |
51 65
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> Z e. E ) |
67 |
64 66
|
eqeltrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> w e. E ) |
68 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
69 |
|
eqid |
|- ( +g ` ( Scalar ` U ) ) = ( +g ` ( Scalar ` U ) ) |
70 |
6 8 10 18 68 19 69
|
dvhopvadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( x e. T /\ y e. E ) /\ ( z e. T /\ w e. E ) ) -> ( <. x , y >. .+ <. z , w >. ) = <. ( x o. z ) , ( y ( +g ` ( Scalar ` U ) ) w ) >. ) |
71 |
51 61 53 63 67 70
|
syl122anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> ( <. x , y >. .+ <. z , w >. ) = <. ( x o. z ) , ( y ( +g ` ( Scalar ` U ) ) w ) >. ) |
72 |
6 8 10 18 68 22 69
|
dvhfplusr |
|- ( ( K e. HL /\ W e. H ) -> ( +g ` ( Scalar ` U ) ) = O ) |
73 |
51 72
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> ( +g ` ( Scalar ` U ) ) = O ) |
74 |
73
|
oveqd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> ( y ( +g ` ( Scalar ` U ) ) w ) = ( y O w ) ) |
75 |
74
|
opeq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> <. ( x o. z ) , ( y ( +g ` ( Scalar ` U ) ) w ) >. = <. ( x o. z ) , ( y O w ) >. ) |
76 |
71 75
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> ( <. x , y >. .+ <. z , w >. ) = <. ( x o. z ) , ( y O w ) >. ) |
77 |
76
|
eqeq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> ( <. F , S >. = ( <. x , y >. .+ <. z , w >. ) <-> <. F , S >. = <. ( x o. z ) , ( y O w ) >. ) ) |
78 |
13 14
|
opth |
|- ( <. F , S >. = <. ( x o. z ) , ( y O w ) >. <-> ( F = ( x o. z ) /\ S = ( y O w ) ) ) |
79 |
64
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> ( y O w ) = ( y O Z ) ) |
80 |
1 6 8 10 15 22
|
tendo0plr |
|- ( ( ( K e. HL /\ W e. H ) /\ y e. E ) -> ( y O Z ) = y ) |
81 |
51 53 80
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> ( y O Z ) = y ) |
82 |
79 81
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> ( y O w ) = y ) |
83 |
82
|
eqeq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> ( S = ( y O w ) <-> S = y ) ) |
84 |
83
|
anbi2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> ( ( F = ( x o. z ) /\ S = ( y O w ) ) <-> ( F = ( x o. z ) /\ S = y ) ) ) |
85 |
78 84
|
syl5bb |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> ( <. F , S >. = <. ( x o. z ) , ( y O w ) >. <-> ( F = ( x o. z ) /\ S = y ) ) ) |
86 |
77 85
|
bitrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) ) -> ( <. F , S >. = ( <. x , y >. .+ <. z , w >. ) <-> ( F = ( x o. z ) /\ S = y ) ) ) |
87 |
86
|
pm5.32da |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ <. F , S >. = ( <. x , y >. .+ <. z , w >. ) ) <-> ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) ) |
88 |
|
simplll |
|- ( ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) -> x = ( y ` G ) ) |
89 |
88
|
adantl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> x = ( y ` G ) ) |
90 |
|
simprrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> S = y ) |
91 |
90
|
fveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( S ` G ) = ( y ` G ) ) |
92 |
89 91
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> x = ( S ` G ) ) |
93 |
90
|
eqcomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> y = S ) |
94 |
|
coass |
|- ( ( `' ( S ` G ) o. ( S ` G ) ) o. z ) = ( `' ( S ` G ) o. ( ( S ` G ) o. z ) ) |
95 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( K e. HL /\ W e. H ) ) |
96 |
|
simpllr |
|- ( ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) -> y e. E ) |
97 |
96
|
adantl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> y e. E ) |
98 |
90 97
|
eqeltrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> S e. E ) |
99 |
58
|
adantrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> G e. T ) |
100 |
6 8 10
|
tendocl |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ G e. T ) -> ( S ` G ) e. T ) |
101 |
95 98 99 100
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( S ` G ) e. T ) |
102 |
1 6 8
|
ltrn1o |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S ` G ) e. T ) -> ( S ` G ) : B -1-1-onto-> B ) |
103 |
95 101 102
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( S ` G ) : B -1-1-onto-> B ) |
104 |
|
f1ococnv1 |
|- ( ( S ` G ) : B -1-1-onto-> B -> ( `' ( S ` G ) o. ( S ` G ) ) = ( _I |` B ) ) |
105 |
103 104
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( `' ( S ` G ) o. ( S ` G ) ) = ( _I |` B ) ) |
106 |
105
|
coeq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( ( `' ( S ` G ) o. ( S ` G ) ) o. z ) = ( ( _I |` B ) o. z ) ) |
107 |
62
|
ad2antrl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> z e. T ) |
108 |
1 6 8
|
ltrn1o |
|- ( ( ( K e. HL /\ W e. H ) /\ z e. T ) -> z : B -1-1-onto-> B ) |
109 |
95 107 108
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> z : B -1-1-onto-> B ) |
110 |
|
f1of |
|- ( z : B -1-1-onto-> B -> z : B --> B ) |
111 |
|
fcoi2 |
|- ( z : B --> B -> ( ( _I |` B ) o. z ) = z ) |
112 |
109 110 111
|
3syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( ( _I |` B ) o. z ) = z ) |
113 |
106 112
|
eqtr2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> z = ( ( `' ( S ` G ) o. ( S ` G ) ) o. z ) ) |
114 |
|
simprrl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> F = ( x o. z ) ) |
115 |
92
|
coeq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( x o. z ) = ( ( S ` G ) o. z ) ) |
116 |
114 115
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> F = ( ( S ` G ) o. z ) ) |
117 |
116
|
coeq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( F o. `' ( S ` G ) ) = ( ( ( S ` G ) o. z ) o. `' ( S ` G ) ) ) |
118 |
6 8
|
ltrncnv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S ` G ) e. T ) -> `' ( S ` G ) e. T ) |
119 |
95 101 118
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> `' ( S ` G ) e. T ) |
120 |
6 8
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S ` G ) e. T /\ z e. T ) -> ( ( S ` G ) o. z ) e. T ) |
121 |
95 101 107 120
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( ( S ` G ) o. z ) e. T ) |
122 |
6 8
|
ltrncom |
|- ( ( ( K e. HL /\ W e. H ) /\ `' ( S ` G ) e. T /\ ( ( S ` G ) o. z ) e. T ) -> ( `' ( S ` G ) o. ( ( S ` G ) o. z ) ) = ( ( ( S ` G ) o. z ) o. `' ( S ` G ) ) ) |
123 |
95 119 121 122
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( `' ( S ` G ) o. ( ( S ` G ) o. z ) ) = ( ( ( S ` G ) o. z ) o. `' ( S ` G ) ) ) |
124 |
117 123
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( F o. `' ( S ` G ) ) = ( `' ( S ` G ) o. ( ( S ` G ) o. z ) ) ) |
125 |
94 113 124
|
3eqtr4a |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> z = ( F o. `' ( S ` G ) ) ) |
126 |
|
simplrr |
|- ( ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) -> w = Z ) |
127 |
126
|
adantl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> w = Z ) |
128 |
125 127
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) |
129 |
92 93 128
|
jca31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) |
130 |
129
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) -> ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) ) |
131 |
130
|
pm4.71rd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) <-> ( ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) ) ) |
132 |
87 131
|
bitrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ <. F , S >. = ( <. x , y >. .+ <. z , w >. ) ) <-> ( ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) ) ) |
133 |
|
simprrl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> F = ( x o. z ) ) |
134 |
|
simpll1 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( K e. HL /\ W e. H ) ) |
135 |
88
|
adantl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> x = ( y ` G ) ) |
136 |
96
|
adantl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> y e. E ) |
137 |
134 54
|
syl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
138 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
139 |
138
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
140 |
134 137 139 57
|
syl3anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> G e. T ) |
141 |
134 136 140 59
|
syl3anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( y ` G ) e. T ) |
142 |
135 141
|
eqeltrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> x e. T ) |
143 |
62
|
ad2antrl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> z e. T ) |
144 |
6 8
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. T /\ z e. T ) -> ( x o. z ) e. T ) |
145 |
134 142 143 144
|
syl3anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( x o. z ) e. T ) |
146 |
133 145
|
eqeltrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> F e. T ) |
147 |
|
simpl1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) -> K e. HL ) |
148 |
147
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> K e. HL ) |
149 |
148
|
hllatd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> K e. Lat ) |
150 |
1 6 8 9
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ z e. T ) -> ( R ` z ) e. B ) |
151 |
134 143 150
|
syl2anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( R ` z ) e. B ) |
152 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) -> X e. B ) |
153 |
152
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> X e. B ) |
154 |
|
simpl1r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) -> W e. H ) |
155 |
154
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> W e. H ) |
156 |
155 33
|
syl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> W e. B ) |
157 |
149 153 156 35
|
syl3anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( X ./\ W ) e. B ) |
158 |
|
simprlr |
|- ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) -> ( R ` z ) .<_ ( X ./\ W ) ) |
159 |
158
|
ad2antrl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( R ` z ) .<_ ( X ./\ W ) ) |
160 |
1 2 4
|
latmle1 |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) .<_ X ) |
161 |
149 153 156 160
|
syl3anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( X ./\ W ) .<_ X ) |
162 |
1 2 149 151 157 153 159 161
|
lattrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( R ` z ) .<_ X ) |
163 |
146 136 162
|
jca31 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) -> ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) |
164 |
|
simprll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) -> x = ( S ` G ) ) |
165 |
164
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> x = ( S ` G ) ) |
166 |
|
simprlr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) -> y = S ) |
167 |
166
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> y = S ) |
168 |
167
|
fveq1d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( y ` G ) = ( S ` G ) ) |
169 |
165 168
|
eqtr4d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> x = ( y ` G ) ) |
170 |
|
simprlr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> y e. E ) |
171 |
169 170
|
jca |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( x = ( y ` G ) /\ y e. E ) ) |
172 |
|
simprrl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) -> z = ( F o. `' ( S ` G ) ) ) |
173 |
172
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> z = ( F o. `' ( S ` G ) ) ) |
174 |
|
simpll1 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( K e. HL /\ W e. H ) ) |
175 |
|
simprll |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> F e. T ) |
176 |
167 170
|
eqeltrrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> S e. E ) |
177 |
174 54
|
syl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( P e. A /\ -. P .<_ W ) ) |
178 |
138
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
179 |
174 177 178 57
|
syl3anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> G e. T ) |
180 |
174 176 179 100
|
syl3anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( S ` G ) e. T ) |
181 |
174 180 118
|
syl2anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> `' ( S ` G ) e. T ) |
182 |
6 8
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ `' ( S ` G ) e. T ) -> ( F o. `' ( S ` G ) ) e. T ) |
183 |
174 175 181 182
|
syl3anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( F o. `' ( S ` G ) ) e. T ) |
184 |
173 183
|
eqeltrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> z e. T ) |
185 |
|
simprr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( R ` z ) .<_ X ) |
186 |
2 6 8 9
|
trlle |
|- ( ( ( K e. HL /\ W e. H ) /\ z e. T ) -> ( R ` z ) .<_ W ) |
187 |
174 184 186
|
syl2anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( R ` z ) .<_ W ) |
188 |
147
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> K e. HL ) |
189 |
188
|
hllatd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> K e. Lat ) |
190 |
174 184 150
|
syl2anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( R ` z ) e. B ) |
191 |
152
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> X e. B ) |
192 |
154
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> W e. H ) |
193 |
192 33
|
syl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> W e. B ) |
194 |
1 2 4
|
latlem12 |
|- ( ( K e. Lat /\ ( ( R ` z ) e. B /\ X e. B /\ W e. B ) ) -> ( ( ( R ` z ) .<_ X /\ ( R ` z ) .<_ W ) <-> ( R ` z ) .<_ ( X ./\ W ) ) ) |
195 |
189 190 191 193 194
|
syl13anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( ( ( R ` z ) .<_ X /\ ( R ` z ) .<_ W ) <-> ( R ` z ) .<_ ( X ./\ W ) ) ) |
196 |
185 187 195
|
mpbi2and |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( R ` z ) .<_ ( X ./\ W ) ) |
197 |
|
simprrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) -> w = Z ) |
198 |
197
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> w = Z ) |
199 |
184 196 198
|
jca31 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) |
200 |
174 180 102
|
syl2anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( S ` G ) : B -1-1-onto-> B ) |
201 |
200 104
|
syl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( `' ( S ` G ) o. ( S ` G ) ) = ( _I |` B ) ) |
202 |
201
|
coeq2d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( F o. ( `' ( S ` G ) o. ( S ` G ) ) ) = ( F o. ( _I |` B ) ) ) |
203 |
1 6 8
|
ltrn1o |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> F : B -1-1-onto-> B ) |
204 |
174 175 203
|
syl2anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> F : B -1-1-onto-> B ) |
205 |
|
f1of |
|- ( F : B -1-1-onto-> B -> F : B --> B ) |
206 |
|
fcoi1 |
|- ( F : B --> B -> ( F o. ( _I |` B ) ) = F ) |
207 |
204 205 206
|
3syl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( F o. ( _I |` B ) ) = F ) |
208 |
202 207
|
eqtr2d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> F = ( F o. ( `' ( S ` G ) o. ( S ` G ) ) ) ) |
209 |
|
coass |
|- ( ( F o. `' ( S ` G ) ) o. ( S ` G ) ) = ( F o. ( `' ( S ` G ) o. ( S ` G ) ) ) |
210 |
208 209
|
eqtr4di |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> F = ( ( F o. `' ( S ` G ) ) o. ( S ` G ) ) ) |
211 |
6 8
|
ltrncom |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S ` G ) e. T /\ ( F o. `' ( S ` G ) ) e. T ) -> ( ( S ` G ) o. ( F o. `' ( S ` G ) ) ) = ( ( F o. `' ( S ` G ) ) o. ( S ` G ) ) ) |
212 |
174 180 183 211
|
syl3anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( ( S ` G ) o. ( F o. `' ( S ` G ) ) ) = ( ( F o. `' ( S ` G ) ) o. ( S ` G ) ) ) |
213 |
210 212
|
eqtr4d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> F = ( ( S ` G ) o. ( F o. `' ( S ` G ) ) ) ) |
214 |
165 173
|
coeq12d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( x o. z ) = ( ( S ` G ) o. ( F o. `' ( S ` G ) ) ) ) |
215 |
213 214
|
eqtr4d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> F = ( x o. z ) ) |
216 |
167
|
eqcomd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> S = y ) |
217 |
215 216
|
jca |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( F = ( x o. z ) /\ S = y ) ) |
218 |
171 199 217
|
jca31 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) -> ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) |
219 |
163 218
|
impbida |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) /\ ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) ) -> ( ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) <-> ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) ) |
220 |
219
|
pm5.32da |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( ( ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) <-> ( ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) ) ) |
221 |
|
df-3an |
|- ( ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) <-> ( ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) ) |
222 |
220 221
|
bitr4di |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( ( ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) ) /\ ( ( ( x = ( y ` G ) /\ y e. E ) /\ ( ( z e. T /\ ( R ` z ) .<_ ( X ./\ W ) ) /\ w = Z ) ) /\ ( F = ( x o. z ) /\ S = y ) ) ) <-> ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) ) ) |
223 |
50 132 222
|
3bitrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( ( ( <. x , y >. e. ( C ` Q ) /\ <. z , w >. e. ( N ` ( X ./\ W ) ) ) /\ <. F , S >. = ( <. x , y >. .+ <. z , w >. ) ) <-> ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) ) ) |
224 |
223
|
4exbidv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( E. x E. y E. z E. w ( ( <. x , y >. e. ( C ` Q ) /\ <. z , w >. e. ( N ` ( X ./\ W ) ) ) /\ <. F , S >. = ( <. x , y >. .+ <. z , w >. ) ) <-> E. x E. y E. z E. w ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) ) ) |
225 |
|
fvex |
|- ( S ` G ) e. _V |
226 |
225
|
cnvex |
|- `' ( S ` G ) e. _V |
227 |
13 226
|
coex |
|- ( F o. `' ( S ` G ) ) e. _V |
228 |
8
|
fvexi |
|- T e. _V |
229 |
228
|
mptex |
|- ( h e. T |-> ( _I |` B ) ) e. _V |
230 |
15 229
|
eqeltri |
|- Z e. _V |
231 |
|
biidd |
|- ( x = ( S ` G ) -> ( ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) <-> ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) ) |
232 |
|
eleq1 |
|- ( y = S -> ( y e. E <-> S e. E ) ) |
233 |
232
|
anbi2d |
|- ( y = S -> ( ( F e. T /\ y e. E ) <-> ( F e. T /\ S e. E ) ) ) |
234 |
233
|
anbi1d |
|- ( y = S -> ( ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) <-> ( ( F e. T /\ S e. E ) /\ ( R ` z ) .<_ X ) ) ) |
235 |
|
fveq2 |
|- ( z = ( F o. `' ( S ` G ) ) -> ( R ` z ) = ( R ` ( F o. `' ( S ` G ) ) ) ) |
236 |
235
|
breq1d |
|- ( z = ( F o. `' ( S ` G ) ) -> ( ( R ` z ) .<_ X <-> ( R ` ( F o. `' ( S ` G ) ) ) .<_ X ) ) |
237 |
236
|
anbi2d |
|- ( z = ( F o. `' ( S ` G ) ) -> ( ( ( F e. T /\ S e. E ) /\ ( R ` z ) .<_ X ) <-> ( ( F e. T /\ S e. E ) /\ ( R ` ( F o. `' ( S ` G ) ) ) .<_ X ) ) ) |
238 |
|
biidd |
|- ( w = Z -> ( ( ( F e. T /\ S e. E ) /\ ( R ` ( F o. `' ( S ` G ) ) ) .<_ X ) <-> ( ( F e. T /\ S e. E ) /\ ( R ` ( F o. `' ( S ` G ) ) ) .<_ X ) ) ) |
239 |
225 14 227 230 231 234 237 238
|
ceqsex4v |
|- ( E. x E. y E. z E. w ( ( x = ( S ` G ) /\ y = S ) /\ ( z = ( F o. `' ( S ` G ) ) /\ w = Z ) /\ ( ( F e. T /\ y e. E ) /\ ( R ` z ) .<_ X ) ) <-> ( ( F e. T /\ S e. E ) /\ ( R ` ( F o. `' ( S ` G ) ) ) .<_ X ) ) |
240 |
224 239
|
bitrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( E. x E. y E. z E. w ( ( <. x , y >. e. ( C ` Q ) /\ <. z , w >. e. ( N ` ( X ./\ W ) ) ) /\ <. F , S >. = ( <. x , y >. .+ <. z , w >. ) ) <-> ( ( F e. T /\ S e. E ) /\ ( R ` ( F o. `' ( S ` G ) ) ) .<_ X ) ) ) |
241 |
24 42 240
|
3bitrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( <. F , S >. e. ( I ` X ) <-> ( ( F e. T /\ S e. E ) /\ ( R ` ( F o. `' ( S ` G ) ) ) .<_ X ) ) ) |