Step |
Hyp |
Ref |
Expression |
1 |
|
ceqsex4v.1 |
|- A e. _V |
2 |
|
ceqsex4v.2 |
|- B e. _V |
3 |
|
ceqsex4v.3 |
|- C e. _V |
4 |
|
ceqsex4v.4 |
|- D e. _V |
5 |
|
ceqsex4v.7 |
|- ( x = A -> ( ph <-> ps ) ) |
6 |
|
ceqsex4v.8 |
|- ( y = B -> ( ps <-> ch ) ) |
7 |
|
ceqsex4v.9 |
|- ( z = C -> ( ch <-> th ) ) |
8 |
|
ceqsex4v.10 |
|- ( w = D -> ( th <-> ta ) ) |
9 |
|
19.42vv |
|- ( E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D /\ ph ) ) <-> ( ( x = A /\ y = B ) /\ E. z E. w ( z = C /\ w = D /\ ph ) ) ) |
10 |
|
3anass |
|- ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> ( ( x = A /\ y = B ) /\ ( ( z = C /\ w = D ) /\ ph ) ) ) |
11 |
|
df-3an |
|- ( ( z = C /\ w = D /\ ph ) <-> ( ( z = C /\ w = D ) /\ ph ) ) |
12 |
11
|
anbi2i |
|- ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D /\ ph ) ) <-> ( ( x = A /\ y = B ) /\ ( ( z = C /\ w = D ) /\ ph ) ) ) |
13 |
10 12
|
bitr4i |
|- ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> ( ( x = A /\ y = B ) /\ ( z = C /\ w = D /\ ph ) ) ) |
14 |
13
|
2exbii |
|- ( E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D /\ ph ) ) ) |
15 |
|
df-3an |
|- ( ( x = A /\ y = B /\ E. z E. w ( z = C /\ w = D /\ ph ) ) <-> ( ( x = A /\ y = B ) /\ E. z E. w ( z = C /\ w = D /\ ph ) ) ) |
16 |
9 14 15
|
3bitr4i |
|- ( E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> ( x = A /\ y = B /\ E. z E. w ( z = C /\ w = D /\ ph ) ) ) |
17 |
16
|
2exbii |
|- ( E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> E. x E. y ( x = A /\ y = B /\ E. z E. w ( z = C /\ w = D /\ ph ) ) ) |
18 |
5
|
3anbi3d |
|- ( x = A -> ( ( z = C /\ w = D /\ ph ) <-> ( z = C /\ w = D /\ ps ) ) ) |
19 |
18
|
2exbidv |
|- ( x = A -> ( E. z E. w ( z = C /\ w = D /\ ph ) <-> E. z E. w ( z = C /\ w = D /\ ps ) ) ) |
20 |
6
|
3anbi3d |
|- ( y = B -> ( ( z = C /\ w = D /\ ps ) <-> ( z = C /\ w = D /\ ch ) ) ) |
21 |
20
|
2exbidv |
|- ( y = B -> ( E. z E. w ( z = C /\ w = D /\ ps ) <-> E. z E. w ( z = C /\ w = D /\ ch ) ) ) |
22 |
1 2 19 21
|
ceqsex2v |
|- ( E. x E. y ( x = A /\ y = B /\ E. z E. w ( z = C /\ w = D /\ ph ) ) <-> E. z E. w ( z = C /\ w = D /\ ch ) ) |
23 |
3 4 7 8
|
ceqsex2v |
|- ( E. z E. w ( z = C /\ w = D /\ ch ) <-> ta ) |
24 |
17 22 23
|
3bitri |
|- ( E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> ta ) |