Metamath Proof Explorer


Theorem ceqsex4v

Description: Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011)

Ref Expression
Hypotheses ceqsex4v.1 𝐴 ∈ V
ceqsex4v.2 𝐵 ∈ V
ceqsex4v.3 𝐶 ∈ V
ceqsex4v.4 𝐷 ∈ V
ceqsex4v.7 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
ceqsex4v.8 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
ceqsex4v.9 ( 𝑧 = 𝐶 → ( 𝜒𝜃 ) )
ceqsex4v.10 ( 𝑤 = 𝐷 → ( 𝜃𝜏 ) )
Assertion ceqsex4v ( ∃ 𝑥𝑦𝑧𝑤 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ 𝜏 )

Proof

Step Hyp Ref Expression
1 ceqsex4v.1 𝐴 ∈ V
2 ceqsex4v.2 𝐵 ∈ V
3 ceqsex4v.3 𝐶 ∈ V
4 ceqsex4v.4 𝐷 ∈ V
5 ceqsex4v.7 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
6 ceqsex4v.8 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
7 ceqsex4v.9 ( 𝑧 = 𝐶 → ( 𝜒𝜃 ) )
8 ceqsex4v.10 ( 𝑤 = 𝐷 → ( 𝜃𝜏 ) )
9 19.42vv ( ∃ 𝑧𝑤 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶𝑤 = 𝐷𝜑 ) ) ↔ ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ ∃ 𝑧𝑤 ( 𝑧 = 𝐶𝑤 = 𝐷𝜑 ) ) )
10 3anass ( ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ ( ( 𝑧 = 𝐶𝑤 = 𝐷 ) ∧ 𝜑 ) ) )
11 df-3an ( ( 𝑧 = 𝐶𝑤 = 𝐷𝜑 ) ↔ ( ( 𝑧 = 𝐶𝑤 = 𝐷 ) ∧ 𝜑 ) )
12 11 anbi2i ( ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶𝑤 = 𝐷𝜑 ) ) ↔ ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ ( ( 𝑧 = 𝐶𝑤 = 𝐷 ) ∧ 𝜑 ) ) )
13 10 12 bitr4i ( ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶𝑤 = 𝐷𝜑 ) ) )
14 13 2exbii ( ∃ 𝑧𝑤 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ ∃ 𝑧𝑤 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶𝑤 = 𝐷𝜑 ) ) )
15 df-3an ( ( 𝑥 = 𝐴𝑦 = 𝐵 ∧ ∃ 𝑧𝑤 ( 𝑧 = 𝐶𝑤 = 𝐷𝜑 ) ) ↔ ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ ∃ 𝑧𝑤 ( 𝑧 = 𝐶𝑤 = 𝐷𝜑 ) ) )
16 9 14 15 3bitr4i ( ∃ 𝑧𝑤 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴𝑦 = 𝐵 ∧ ∃ 𝑧𝑤 ( 𝑧 = 𝐶𝑤 = 𝐷𝜑 ) ) )
17 16 2exbii ( ∃ 𝑥𝑦𝑧𝑤 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ ∃ 𝑥𝑦 ( 𝑥 = 𝐴𝑦 = 𝐵 ∧ ∃ 𝑧𝑤 ( 𝑧 = 𝐶𝑤 = 𝐷𝜑 ) ) )
18 5 3anbi3d ( 𝑥 = 𝐴 → ( ( 𝑧 = 𝐶𝑤 = 𝐷𝜑 ) ↔ ( 𝑧 = 𝐶𝑤 = 𝐷𝜓 ) ) )
19 18 2exbidv ( 𝑥 = 𝐴 → ( ∃ 𝑧𝑤 ( 𝑧 = 𝐶𝑤 = 𝐷𝜑 ) ↔ ∃ 𝑧𝑤 ( 𝑧 = 𝐶𝑤 = 𝐷𝜓 ) ) )
20 6 3anbi3d ( 𝑦 = 𝐵 → ( ( 𝑧 = 𝐶𝑤 = 𝐷𝜓 ) ↔ ( 𝑧 = 𝐶𝑤 = 𝐷𝜒 ) ) )
21 20 2exbidv ( 𝑦 = 𝐵 → ( ∃ 𝑧𝑤 ( 𝑧 = 𝐶𝑤 = 𝐷𝜓 ) ↔ ∃ 𝑧𝑤 ( 𝑧 = 𝐶𝑤 = 𝐷𝜒 ) ) )
22 1 2 19 21 ceqsex2v ( ∃ 𝑥𝑦 ( 𝑥 = 𝐴𝑦 = 𝐵 ∧ ∃ 𝑧𝑤 ( 𝑧 = 𝐶𝑤 = 𝐷𝜑 ) ) ↔ ∃ 𝑧𝑤 ( 𝑧 = 𝐶𝑤 = 𝐷𝜒 ) )
23 3 4 7 8 ceqsex2v ( ∃ 𝑧𝑤 ( 𝑧 = 𝐶𝑤 = 𝐷𝜒 ) ↔ 𝜏 )
24 17 22 23 3bitri ( ∃ 𝑥𝑦𝑧𝑤 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ 𝜏 )