Step |
Hyp |
Ref |
Expression |
1 |
|
ceqsex4v.1 |
⊢ 𝐴 ∈ V |
2 |
|
ceqsex4v.2 |
⊢ 𝐵 ∈ V |
3 |
|
ceqsex4v.3 |
⊢ 𝐶 ∈ V |
4 |
|
ceqsex4v.4 |
⊢ 𝐷 ∈ V |
5 |
|
ceqsex4v.7 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
6 |
|
ceqsex4v.8 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
7 |
|
ceqsex4v.9 |
⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) |
8 |
|
ceqsex4v.10 |
⊢ ( 𝑤 = 𝐷 → ( 𝜃 ↔ 𝜏 ) ) |
9 |
|
19.42vv |
⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ) |
10 |
|
3anass |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ) ) |
11 |
|
df-3an |
⊢ ( ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ↔ ( ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ) |
12 |
11
|
anbi2i |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ) ) |
13 |
10 12
|
bitr4i |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ) |
14 |
13
|
2exbii |
⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ) |
15 |
|
df-3an |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ) |
16 |
9 14 15
|
3bitr4i |
⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ) |
17 |
16
|
2exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ) |
18 |
5
|
3anbi3d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ↔ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜓 ) ) ) |
19 |
18
|
2exbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜓 ) ) ) |
20 |
6
|
3anbi3d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜓 ) ↔ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜒 ) ) ) |
21 |
20
|
2exbidv |
⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜓 ) ↔ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜒 ) ) ) |
22 |
1 2 19 21
|
ceqsex2v |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ↔ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜒 ) ) |
23 |
3 4 7 8
|
ceqsex2v |
⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜒 ) ↔ 𝜏 ) |
24 |
17 22 23
|
3bitri |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ 𝜏 ) |