Step |
Hyp |
Ref |
Expression |
1 |
|
dihopelvalcp.b |
|- B = ( Base ` K ) |
2 |
|
dihopelvalcp.l |
|- .<_ = ( le ` K ) |
3 |
|
dihopelvalcp.j |
|- .\/ = ( join ` K ) |
4 |
|
dihopelvalcp.m |
|- ./\ = ( meet ` K ) |
5 |
|
dihopelvalcp.a |
|- A = ( Atoms ` K ) |
6 |
|
dihopelvalcp.h |
|- H = ( LHyp ` K ) |
7 |
|
dihopelvalcp.p |
|- P = ( ( oc ` K ) ` W ) |
8 |
|
dihopelvalcp.t |
|- T = ( ( LTrn ` K ) ` W ) |
9 |
|
dihopelvalcp.r |
|- R = ( ( trL ` K ) ` W ) |
10 |
|
dihopelvalcp.e |
|- E = ( ( TEndo ` K ) ` W ) |
11 |
|
dihopelvalcp.i |
|- I = ( ( DIsoH ` K ) ` W ) |
12 |
|
dihopelvalcp.g |
|- G = ( iota_ g e. T ( g ` P ) = Q ) |
13 |
|
dihopelvalcp.f |
|- F e. _V |
14 |
|
dihopelvalcp.s |
|- S e. _V |
15 |
|
eqid |
|- ( h e. T |-> ( _I |` B ) ) = ( h e. T |-> ( _I |` B ) ) |
16 |
|
eqid |
|- ( ( DIsoB ` K ) ` W ) = ( ( DIsoB ` K ) ` W ) |
17 |
|
eqid |
|- ( ( DIsoC ` K ) ` W ) = ( ( DIsoC ` K ) ` W ) |
18 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
19 |
|
eqid |
|- ( +g ` ( ( DVecH ` K ) ` W ) ) = ( +g ` ( ( DVecH ` K ) ` W ) ) |
20 |
|
eqid |
|- ( LSubSp ` ( ( DVecH ` K ) ` W ) ) = ( LSubSp ` ( ( DVecH ` K ) ` W ) ) |
21 |
|
eqid |
|- ( LSSum ` ( ( DVecH ` K ) ` W ) ) = ( LSSum ` ( ( DVecH ` K ) ` W ) ) |
22 |
|
eqid |
|- ( a e. E , b e. E |-> ( h e. T |-> ( ( a ` h ) o. ( b ` h ) ) ) ) = ( a e. E , b e. E |-> ( h e. T |-> ( ( a ` h ) o. ( b ` h ) ) ) ) |
23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
|
dihopelvalcpre |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q .\/ ( X ./\ W ) ) = X ) ) -> ( <. F , S >. e. ( I ` X ) <-> ( ( F e. T /\ S e. E ) /\ ( R ` ( F o. `' ( S ` G ) ) ) .<_ X ) ) ) |