Step |
Hyp |
Ref |
Expression |
1 |
|
dihopelvalcp.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihopelvalcp.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihopelvalcp.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dihopelvalcp.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
dihopelvalcp.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
dihopelvalcp.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
dihopelvalcp.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihopelvalcp.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dihopelvalcp.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
dihopelvalcp.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
dihopelvalcp.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
dihopelvalcp.g |
⊢ 𝐺 = ( ℩ 𝑔 ∈ 𝑇 ( 𝑔 ‘ 𝑃 ) = 𝑄 ) |
13 |
|
dihopelvalcp.f |
⊢ 𝐹 ∈ V |
14 |
|
dihopelvalcp.s |
⊢ 𝑆 ∈ V |
15 |
|
eqid |
⊢ ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
16 |
|
eqid |
⊢ ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
17 |
|
eqid |
⊢ ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
18 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
19 |
|
eqid |
⊢ ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
20 |
|
eqid |
⊢ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
21 |
|
eqid |
⊢ ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
22 |
|
eqid |
⊢ ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( ℎ ∈ 𝑇 ↦ ( ( 𝑎 ‘ ℎ ) ∘ ( 𝑏 ‘ ℎ ) ) ) ) = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( ℎ ∈ 𝑇 ↦ ( ( 𝑎 ‘ ℎ ) ∘ ( 𝑏 ‘ ℎ ) ) ) ) |
23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
|
dihopelvalcpre |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑄 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 〈 𝐹 , 𝑆 〉 ∈ ( 𝐼 ‘ 𝑋 ) ↔ ( ( 𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸 ) ∧ ( 𝑅 ‘ ( 𝐹 ∘ ◡ ( 𝑆 ‘ 𝐺 ) ) ) ≤ 𝑋 ) ) ) |