Metamath Proof Explorer


Theorem dihopelvalc

Description: Member of value of isomorphism H for a lattice K when -. X .<_ W , given auxiliary atom Q . (Contributed by NM, 13-Mar-2014)

Ref Expression
Hypotheses dihopelvalcp.b 𝐵 = ( Base ‘ 𝐾 )
dihopelvalcp.l = ( le ‘ 𝐾 )
dihopelvalcp.j = ( join ‘ 𝐾 )
dihopelvalcp.m = ( meet ‘ 𝐾 )
dihopelvalcp.a 𝐴 = ( Atoms ‘ 𝐾 )
dihopelvalcp.h 𝐻 = ( LHyp ‘ 𝐾 )
dihopelvalcp.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
dihopelvalcp.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dihopelvalcp.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
dihopelvalcp.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dihopelvalcp.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihopelvalcp.g 𝐺 = ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 )
dihopelvalcp.f 𝐹 ∈ V
dihopelvalcp.s 𝑆 ∈ V
Assertion dihopelvalc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ⟨ 𝐹 , 𝑆 ⟩ ∈ ( 𝐼𝑋 ) ↔ ( ( 𝐹𝑇𝑆𝐸 ) ∧ ( 𝑅 ‘ ( 𝐹 ( 𝑆𝐺 ) ) ) 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 dihopelvalcp.b 𝐵 = ( Base ‘ 𝐾 )
2 dihopelvalcp.l = ( le ‘ 𝐾 )
3 dihopelvalcp.j = ( join ‘ 𝐾 )
4 dihopelvalcp.m = ( meet ‘ 𝐾 )
5 dihopelvalcp.a 𝐴 = ( Atoms ‘ 𝐾 )
6 dihopelvalcp.h 𝐻 = ( LHyp ‘ 𝐾 )
7 dihopelvalcp.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
8 dihopelvalcp.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
9 dihopelvalcp.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
10 dihopelvalcp.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
11 dihopelvalcp.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
12 dihopelvalcp.g 𝐺 = ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 )
13 dihopelvalcp.f 𝐹 ∈ V
14 dihopelvalcp.s 𝑆 ∈ V
15 eqid ( 𝑇 ↦ ( I ↾ 𝐵 ) ) = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
16 eqid ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
17 eqid ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
18 eqid ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
19 eqid ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
20 eqid ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
21 eqid ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSSum ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
22 eqid ( 𝑎𝐸 , 𝑏𝐸 ↦ ( 𝑇 ↦ ( ( 𝑎 ) ∘ ( 𝑏 ) ) ) ) = ( 𝑎𝐸 , 𝑏𝐸 ↦ ( 𝑇 ↦ ( ( 𝑎 ) ∘ ( 𝑏 ) ) ) )
23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 dihopelvalcpre ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ⟨ 𝐹 , 𝑆 ⟩ ∈ ( 𝐼𝑋 ) ↔ ( ( 𝐹𝑇𝑆𝐸 ) ∧ ( 𝑅 ‘ ( 𝐹 ( 𝑆𝐺 ) ) ) 𝑋 ) ) )