Step |
Hyp |
Ref |
Expression |
1 |
|
dihlss.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihlss.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dihlss.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dihlss.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dihlss.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
6 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
7 |
|
eqid |
⊢ ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
1 6 2 3 7
|
dihvalb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) |
9 |
1 6 2 4 7 5
|
diblss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ∈ 𝑆 ) |
10 |
8 9
|
eqeltrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑆 ) |
11 |
10
|
anassrs |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑋 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑆 ) |
12 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
13 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
14 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
15 |
|
eqid |
⊢ ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
17 |
1 6 12 13 14 2 3 7 15 4 5 16
|
dihlsscpre |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑆 ) |
18 |
17
|
anassrs |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑋 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑆 ) |
19 |
11 18
|
pm2.61dan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝑆 ) |