Metamath Proof Explorer


Theorem dihlss

Description: The value of isomorphism H is a subspace. (Contributed by NM, 6-Mar-2014)

Ref Expression
Hypotheses dihlss.b B = Base K
dihlss.h H = LHyp K
dihlss.i I = DIsoH K W
dihlss.u U = DVecH K W
dihlss.s S = LSubSp U
Assertion dihlss K HL W H X B I X S

Proof

Step Hyp Ref Expression
1 dihlss.b B = Base K
2 dihlss.h H = LHyp K
3 dihlss.i I = DIsoH K W
4 dihlss.u U = DVecH K W
5 dihlss.s S = LSubSp U
6 eqid K = K
7 eqid DIsoB K W = DIsoB K W
8 1 6 2 3 7 dihvalb K HL W H X B X K W I X = DIsoB K W X
9 1 6 2 4 7 5 diblss K HL W H X B X K W DIsoB K W X S
10 8 9 eqeltrd K HL W H X B X K W I X S
11 10 anassrs K HL W H X B X K W I X S
12 eqid join K = join K
13 eqid meet K = meet K
14 eqid Atoms K = Atoms K
15 eqid DIsoC K W = DIsoC K W
16 eqid LSSum U = LSSum U
17 1 6 12 13 14 2 3 7 15 4 5 16 dihlsscpre K HL W H X B ¬ X K W I X S
18 17 anassrs K HL W H X B ¬ X K W I X S
19 11 18 pm2.61dan K HL W H X B I X S