Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dihss
Next ⟩
dihssxp
Metamath Proof Explorer
Ascii
Unicode
Theorem
dihss
Description:
The value of isomorphism H is a set of vectors.
(Contributed by
NM
, 14-Mar-2014)
Ref
Expression
Hypotheses
dihss.b
⊢
B
=
Base
K
dihss.h
⊢
H
=
LHyp
⁡
K
dihss.i
⊢
I
=
DIsoH
⁡
K
⁡
W
dihss.u
⊢
U
=
DVecH
⁡
K
⁡
W
dihss.v
⊢
V
=
Base
U
Assertion
dihss
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
→
I
⁡
X
⊆
V
Proof
Step
Hyp
Ref
Expression
1
dihss.b
⊢
B
=
Base
K
2
dihss.h
⊢
H
=
LHyp
⁡
K
3
dihss.i
⊢
I
=
DIsoH
⁡
K
⁡
W
4
dihss.u
⊢
U
=
DVecH
⁡
K
⁡
W
5
dihss.v
⊢
V
=
Base
U
6
eqid
⊢
LSubSp
⁡
U
=
LSubSp
⁡
U
7
1
2
3
4
6
dihlss
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
→
I
⁡
X
∈
LSubSp
⁡
U
8
5
6
lssss
⊢
I
⁡
X
∈
LSubSp
⁡
U
→
I
⁡
X
⊆
V
9
7
8
syl
⊢
K
∈
HL
∧
W
∈
H
∧
X
∈
B
→
I
⁡
X
⊆
V