Metamath Proof Explorer


Theorem dihss

Description: The value of isomorphism H is a set of vectors. (Contributed by NM, 14-Mar-2014)

Ref Expression
Hypotheses dihss.b B = Base K
dihss.h H = LHyp K
dihss.i I = DIsoH K W
dihss.u U = DVecH K W
dihss.v V = Base U
Assertion dihss K HL W H X B I X V

Proof

Step Hyp Ref Expression
1 dihss.b B = Base K
2 dihss.h H = LHyp K
3 dihss.i I = DIsoH K W
4 dihss.u U = DVecH K W
5 dihss.v V = Base U
6 eqid LSubSp U = LSubSp U
7 1 2 3 4 6 dihlss K HL W H X B I X LSubSp U
8 5 6 lssss I X LSubSp U I X V
9 7 8 syl K HL W H X B I X V