Metamath Proof Explorer


Theorem dihssxp

Description: An isomorphism H value is included in the vector space (expressed as T X. E ). (Contributed by NM, 26-Sep-2014)

Ref Expression
Hypotheses dihssxp.b B = Base K
dihssxp.h H = LHyp K
dihssxp.t T = LTrn K W
dihssxp.e E = TEndo K W
dihssxp.i I = DIsoH K W
dihssxp.k φ K HL W H
dihssxp.x φ X B
Assertion dihssxp φ I X T × E

Proof

Step Hyp Ref Expression
1 dihssxp.b B = Base K
2 dihssxp.h H = LHyp K
3 dihssxp.t T = LTrn K W
4 dihssxp.e E = TEndo K W
5 dihssxp.i I = DIsoH K W
6 dihssxp.k φ K HL W H
7 dihssxp.x φ X B
8 eqid DVecH K W = DVecH K W
9 eqid Base DVecH K W = Base DVecH K W
10 1 2 5 8 9 dihss K HL W H X B I X Base DVecH K W
11 6 7 10 syl2anc φ I X Base DVecH K W
12 2 3 4 8 9 dvhvbase K HL W H Base DVecH K W = T × E
13 6 12 syl φ Base DVecH K W = T × E
14 11 13 sseqtrd φ I X T × E