Metamath Proof Explorer


Theorem dihopcl

Description: Closure of an ordered pair (vector) member of a value of isomorphism H. (Contributed by NM, 26-Sep-2014)

Ref Expression
Hypotheses dihopcl.b B=BaseK
dihopcl.h H=LHypK
dihopcl.t T=LTrnKW
dihopcl.e E=TEndoKW
dihopcl.i I=DIsoHKW
dihopcl.k φKHLWH
dihopcl.x φXB
dihopcl.y φFSIX
Assertion dihopcl φFTSE

Proof

Step Hyp Ref Expression
1 dihopcl.b B=BaseK
2 dihopcl.h H=LHypK
3 dihopcl.t T=LTrnKW
4 dihopcl.e E=TEndoKW
5 dihopcl.i I=DIsoHKW
6 dihopcl.k φKHLWH
7 dihopcl.x φXB
8 dihopcl.y φFSIX
9 1 2 3 4 5 6 7 dihssxp φIXT×E
10 9 8 sseldd φFST×E
11 opelxp FST×EFTSE
12 10 11 sylib φFTSE