Metamath Proof Explorer


Theorem dihopcl

Description: Closure of an ordered pair (vector) member of a value of isomorphism H. (Contributed by NM, 26-Sep-2014)

Ref Expression
Hypotheses dihopcl.b B = Base K
dihopcl.h H = LHyp K
dihopcl.t T = LTrn K W
dihopcl.e E = TEndo K W
dihopcl.i I = DIsoH K W
dihopcl.k φ K HL W H
dihopcl.x φ X B
dihopcl.y φ F S I X
Assertion dihopcl φ F T S E

Proof

Step Hyp Ref Expression
1 dihopcl.b B = Base K
2 dihopcl.h H = LHyp K
3 dihopcl.t T = LTrn K W
4 dihopcl.e E = TEndo K W
5 dihopcl.i I = DIsoH K W
6 dihopcl.k φ K HL W H
7 dihopcl.x φ X B
8 dihopcl.y φ F S I X
9 1 2 3 4 5 6 7 dihssxp φ I X T × E
10 9 8 sseldd φ F S T × E
11 opelxp F S T × E F T S E
12 10 11 sylib φ F T S E