| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihopcl.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dihopcl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 3 |
|
dihopcl.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dihopcl.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dihopcl.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
dihopcl.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 7 |
|
dihopcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 8 |
|
dihopcl.y |
⊢ ( 𝜑 → 〈 𝐹 , 𝑆 〉 ∈ ( 𝐼 ‘ 𝑋 ) ) |
| 9 |
1 2 3 4 5 6 7
|
dihssxp |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝑇 × 𝐸 ) ) |
| 10 |
9 8
|
sseldd |
⊢ ( 𝜑 → 〈 𝐹 , 𝑆 〉 ∈ ( 𝑇 × 𝐸 ) ) |
| 11 |
|
opelxp |
⊢ ( 〈 𝐹 , 𝑆 〉 ∈ ( 𝑇 × 𝐸 ) ↔ ( 𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸 ) ) |
| 12 |
10 11
|
sylib |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸 ) ) |