Metamath Proof Explorer


Theorem dihopcl

Description: Closure of an ordered pair (vector) member of a value of isomorphism H. (Contributed by NM, 26-Sep-2014)

Ref Expression
Hypotheses dihopcl.b 𝐵 = ( Base ‘ 𝐾 )
dihopcl.h 𝐻 = ( LHyp ‘ 𝐾 )
dihopcl.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dihopcl.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dihopcl.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihopcl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dihopcl.x ( 𝜑𝑋𝐵 )
dihopcl.y ( 𝜑 → ⟨ 𝐹 , 𝑆 ⟩ ∈ ( 𝐼𝑋 ) )
Assertion dihopcl ( 𝜑 → ( 𝐹𝑇𝑆𝐸 ) )

Proof

Step Hyp Ref Expression
1 dihopcl.b 𝐵 = ( Base ‘ 𝐾 )
2 dihopcl.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dihopcl.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 dihopcl.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
5 dihopcl.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
6 dihopcl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 dihopcl.x ( 𝜑𝑋𝐵 )
8 dihopcl.y ( 𝜑 → ⟨ 𝐹 , 𝑆 ⟩ ∈ ( 𝐼𝑋 ) )
9 1 2 3 4 5 6 7 dihssxp ( 𝜑 → ( 𝐼𝑋 ) ⊆ ( 𝑇 × 𝐸 ) )
10 9 8 sseldd ( 𝜑 → ⟨ 𝐹 , 𝑆 ⟩ ∈ ( 𝑇 × 𝐸 ) )
11 opelxp ( ⟨ 𝐹 , 𝑆 ⟩ ∈ ( 𝑇 × 𝐸 ) ↔ ( 𝐹𝑇𝑆𝐸 ) )
12 10 11 sylib ( 𝜑 → ( 𝐹𝑇𝑆𝐸 ) )