Description: Closure of an ordered pair (vector) member of a value of isomorphism H. (Contributed by NM, 26-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dihopcl.b | |- B = ( Base ` K ) |
|
| dihopcl.h | |- H = ( LHyp ` K ) |
||
| dihopcl.t | |- T = ( ( LTrn ` K ) ` W ) |
||
| dihopcl.e | |- E = ( ( TEndo ` K ) ` W ) |
||
| dihopcl.i | |- I = ( ( DIsoH ` K ) ` W ) |
||
| dihopcl.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
| dihopcl.x | |- ( ph -> X e. B ) |
||
| dihopcl.y | |- ( ph -> <. F , S >. e. ( I ` X ) ) |
||
| Assertion | dihopcl | |- ( ph -> ( F e. T /\ S e. E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihopcl.b | |- B = ( Base ` K ) |
|
| 2 | dihopcl.h | |- H = ( LHyp ` K ) |
|
| 3 | dihopcl.t | |- T = ( ( LTrn ` K ) ` W ) |
|
| 4 | dihopcl.e | |- E = ( ( TEndo ` K ) ` W ) |
|
| 5 | dihopcl.i | |- I = ( ( DIsoH ` K ) ` W ) |
|
| 6 | dihopcl.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
| 7 | dihopcl.x | |- ( ph -> X e. B ) |
|
| 8 | dihopcl.y | |- ( ph -> <. F , S >. e. ( I ` X ) ) |
|
| 9 | 1 2 3 4 5 6 7 | dihssxp | |- ( ph -> ( I ` X ) C_ ( T X. E ) ) |
| 10 | 9 8 | sseldd | |- ( ph -> <. F , S >. e. ( T X. E ) ) |
| 11 | opelxp | |- ( <. F , S >. e. ( T X. E ) <-> ( F e. T /\ S e. E ) ) |
|
| 12 | 10 11 | sylib | |- ( ph -> ( F e. T /\ S e. E ) ) |