Metamath Proof Explorer


Theorem dihopcl

Description: Closure of an ordered pair (vector) member of a value of isomorphism H. (Contributed by NM, 26-Sep-2014)

Ref Expression
Hypotheses dihopcl.b
|- B = ( Base ` K )
dihopcl.h
|- H = ( LHyp ` K )
dihopcl.t
|- T = ( ( LTrn ` K ) ` W )
dihopcl.e
|- E = ( ( TEndo ` K ) ` W )
dihopcl.i
|- I = ( ( DIsoH ` K ) ` W )
dihopcl.k
|- ( ph -> ( K e. HL /\ W e. H ) )
dihopcl.x
|- ( ph -> X e. B )
dihopcl.y
|- ( ph -> <. F , S >. e. ( I ` X ) )
Assertion dihopcl
|- ( ph -> ( F e. T /\ S e. E ) )

Proof

Step Hyp Ref Expression
1 dihopcl.b
 |-  B = ( Base ` K )
2 dihopcl.h
 |-  H = ( LHyp ` K )
3 dihopcl.t
 |-  T = ( ( LTrn ` K ) ` W )
4 dihopcl.e
 |-  E = ( ( TEndo ` K ) ` W )
5 dihopcl.i
 |-  I = ( ( DIsoH ` K ) ` W )
6 dihopcl.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
7 dihopcl.x
 |-  ( ph -> X e. B )
8 dihopcl.y
 |-  ( ph -> <. F , S >. e. ( I ` X ) )
9 1 2 3 4 5 6 7 dihssxp
 |-  ( ph -> ( I ` X ) C_ ( T X. E ) )
10 9 8 sseldd
 |-  ( ph -> <. F , S >. e. ( T X. E ) )
11 opelxp
 |-  ( <. F , S >. e. ( T X. E ) <-> ( F e. T /\ S e. E ) )
12 10 11 sylib
 |-  ( ph -> ( F e. T /\ S e. E ) )