Description: Closure of an ordered pair (vector) member of a value of isomorphism H. (Contributed by NM, 26-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihopcl.b | |- B = ( Base ` K ) |
|
dihopcl.h | |- H = ( LHyp ` K ) |
||
dihopcl.t | |- T = ( ( LTrn ` K ) ` W ) |
||
dihopcl.e | |- E = ( ( TEndo ` K ) ` W ) |
||
dihopcl.i | |- I = ( ( DIsoH ` K ) ` W ) |
||
dihopcl.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
dihopcl.x | |- ( ph -> X e. B ) |
||
dihopcl.y | |- ( ph -> <. F , S >. e. ( I ` X ) ) |
||
Assertion | dihopcl | |- ( ph -> ( F e. T /\ S e. E ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihopcl.b | |- B = ( Base ` K ) |
|
2 | dihopcl.h | |- H = ( LHyp ` K ) |
|
3 | dihopcl.t | |- T = ( ( LTrn ` K ) ` W ) |
|
4 | dihopcl.e | |- E = ( ( TEndo ` K ) ` W ) |
|
5 | dihopcl.i | |- I = ( ( DIsoH ` K ) ` W ) |
|
6 | dihopcl.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
7 | dihopcl.x | |- ( ph -> X e. B ) |
|
8 | dihopcl.y | |- ( ph -> <. F , S >. e. ( I ` X ) ) |
|
9 | 1 2 3 4 5 6 7 | dihssxp | |- ( ph -> ( I ` X ) C_ ( T X. E ) ) |
10 | 9 8 | sseldd | |- ( ph -> <. F , S >. e. ( T X. E ) ) |
11 | opelxp | |- ( <. F , S >. e. ( T X. E ) <-> ( F e. T /\ S e. E ) ) |
|
12 | 10 11 | sylib | |- ( ph -> ( F e. T /\ S e. E ) ) |