| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xihopellsm.b |
|- B = ( Base ` K ) |
| 2 |
|
xihopellsm.h |
|- H = ( LHyp ` K ) |
| 3 |
|
xihopellsm.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 4 |
|
xihopellsm.e |
|- E = ( ( TEndo ` K ) ` W ) |
| 5 |
|
xihopellsm.a |
|- A = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) |
| 6 |
|
xihopellsm.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 7 |
|
xihopellsm.l |
|- L = ( LSubSp ` U ) |
| 8 |
|
xihopellsm.p |
|- .(+) = ( LSSum ` U ) |
| 9 |
|
xihopellsm.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 10 |
|
xihopellsm.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 11 |
|
xihopellsm.x |
|- ( ph -> X e. B ) |
| 12 |
|
xihopellsm.y |
|- ( ph -> Y e. B ) |
| 13 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 14 |
1 2 9 6 13
|
dihlss |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` X ) e. ( LSubSp ` U ) ) |
| 15 |
10 11 14
|
syl2anc |
|- ( ph -> ( I ` X ) e. ( LSubSp ` U ) ) |
| 16 |
1 2 9 6 13
|
dihlss |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. B ) -> ( I ` Y ) e. ( LSubSp ` U ) ) |
| 17 |
10 12 16
|
syl2anc |
|- ( ph -> ( I ` Y ) e. ( LSubSp ` U ) ) |
| 18 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
| 19 |
2 6 18 13 8
|
dvhopellsm |
|- ( ( ( K e. HL /\ W e. H ) /\ ( I ` X ) e. ( LSubSp ` U ) /\ ( I ` Y ) e. ( LSubSp ` U ) ) -> ( <. F , S >. e. ( ( I ` X ) .(+) ( I ` Y ) ) <-> E. g E. t E. h E. u ( ( <. g , t >. e. ( I ` X ) /\ <. h , u >. e. ( I ` Y ) ) /\ <. F , S >. = ( <. g , t >. ( +g ` U ) <. h , u >. ) ) ) ) |
| 20 |
10 15 17 19
|
syl3anc |
|- ( ph -> ( <. F , S >. e. ( ( I ` X ) .(+) ( I ` Y ) ) <-> E. g E. t E. h E. u ( ( <. g , t >. e. ( I ` X ) /\ <. h , u >. e. ( I ` Y ) ) /\ <. F , S >. = ( <. g , t >. ( +g ` U ) <. h , u >. ) ) ) ) |
| 21 |
10
|
adantr |
|- ( ( ph /\ <. g , t >. e. ( I ` X ) ) -> ( K e. HL /\ W e. H ) ) |
| 22 |
11
|
adantr |
|- ( ( ph /\ <. g , t >. e. ( I ` X ) ) -> X e. B ) |
| 23 |
|
simpr |
|- ( ( ph /\ <. g , t >. e. ( I ` X ) ) -> <. g , t >. e. ( I ` X ) ) |
| 24 |
1 2 3 4 9 21 22 23
|
dihopcl |
|- ( ( ph /\ <. g , t >. e. ( I ` X ) ) -> ( g e. T /\ t e. E ) ) |
| 25 |
10
|
adantr |
|- ( ( ph /\ <. h , u >. e. ( I ` Y ) ) -> ( K e. HL /\ W e. H ) ) |
| 26 |
12
|
adantr |
|- ( ( ph /\ <. h , u >. e. ( I ` Y ) ) -> Y e. B ) |
| 27 |
|
simpr |
|- ( ( ph /\ <. h , u >. e. ( I ` Y ) ) -> <. h , u >. e. ( I ` Y ) ) |
| 28 |
1 2 3 4 9 25 26 27
|
dihopcl |
|- ( ( ph /\ <. h , u >. e. ( I ` Y ) ) -> ( h e. T /\ u e. E ) ) |
| 29 |
24 28
|
anim12dan |
|- ( ( ph /\ ( <. g , t >. e. ( I ` X ) /\ <. h , u >. e. ( I ` Y ) ) ) -> ( ( g e. T /\ t e. E ) /\ ( h e. T /\ u e. E ) ) ) |
| 30 |
10
|
adantr |
|- ( ( ph /\ ( ( g e. T /\ t e. E ) /\ ( h e. T /\ u e. E ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 31 |
|
simprl |
|- ( ( ph /\ ( ( g e. T /\ t e. E ) /\ ( h e. T /\ u e. E ) ) ) -> ( g e. T /\ t e. E ) ) |
| 32 |
|
simprr |
|- ( ( ph /\ ( ( g e. T /\ t e. E ) /\ ( h e. T /\ u e. E ) ) ) -> ( h e. T /\ u e. E ) ) |
| 33 |
2 3 4 5 6 18
|
dvhopvadd2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( g e. T /\ t e. E ) /\ ( h e. T /\ u e. E ) ) -> ( <. g , t >. ( +g ` U ) <. h , u >. ) = <. ( g o. h ) , ( t A u ) >. ) |
| 34 |
30 31 32 33
|
syl3anc |
|- ( ( ph /\ ( ( g e. T /\ t e. E ) /\ ( h e. T /\ u e. E ) ) ) -> ( <. g , t >. ( +g ` U ) <. h , u >. ) = <. ( g o. h ) , ( t A u ) >. ) |
| 35 |
34
|
eqeq2d |
|- ( ( ph /\ ( ( g e. T /\ t e. E ) /\ ( h e. T /\ u e. E ) ) ) -> ( <. F , S >. = ( <. g , t >. ( +g ` U ) <. h , u >. ) <-> <. F , S >. = <. ( g o. h ) , ( t A u ) >. ) ) |
| 36 |
|
vex |
|- g e. _V |
| 37 |
|
vex |
|- h e. _V |
| 38 |
36 37
|
coex |
|- ( g o. h ) e. _V |
| 39 |
|
ovex |
|- ( t A u ) e. _V |
| 40 |
38 39
|
opth2 |
|- ( <. F , S >. = <. ( g o. h ) , ( t A u ) >. <-> ( F = ( g o. h ) /\ S = ( t A u ) ) ) |
| 41 |
35 40
|
bitrdi |
|- ( ( ph /\ ( ( g e. T /\ t e. E ) /\ ( h e. T /\ u e. E ) ) ) -> ( <. F , S >. = ( <. g , t >. ( +g ` U ) <. h , u >. ) <-> ( F = ( g o. h ) /\ S = ( t A u ) ) ) ) |
| 42 |
29 41
|
syldan |
|- ( ( ph /\ ( <. g , t >. e. ( I ` X ) /\ <. h , u >. e. ( I ` Y ) ) ) -> ( <. F , S >. = ( <. g , t >. ( +g ` U ) <. h , u >. ) <-> ( F = ( g o. h ) /\ S = ( t A u ) ) ) ) |
| 43 |
42
|
pm5.32da |
|- ( ph -> ( ( ( <. g , t >. e. ( I ` X ) /\ <. h , u >. e. ( I ` Y ) ) /\ <. F , S >. = ( <. g , t >. ( +g ` U ) <. h , u >. ) ) <-> ( ( <. g , t >. e. ( I ` X ) /\ <. h , u >. e. ( I ` Y ) ) /\ ( F = ( g o. h ) /\ S = ( t A u ) ) ) ) ) |
| 44 |
43
|
4exbidv |
|- ( ph -> ( E. g E. t E. h E. u ( ( <. g , t >. e. ( I ` X ) /\ <. h , u >. e. ( I ` Y ) ) /\ <. F , S >. = ( <. g , t >. ( +g ` U ) <. h , u >. ) ) <-> E. g E. t E. h E. u ( ( <. g , t >. e. ( I ` X ) /\ <. h , u >. e. ( I ` Y ) ) /\ ( F = ( g o. h ) /\ S = ( t A u ) ) ) ) ) |
| 45 |
20 44
|
bitrd |
|- ( ph -> ( <. F , S >. e. ( ( I ` X ) .(+) ( I ` Y ) ) <-> E. g E. t E. h E. u ( ( <. g , t >. e. ( I ` X ) /\ <. h , u >. e. ( I ` Y ) ) /\ ( F = ( g o. h ) /\ S = ( t A u ) ) ) ) ) |