Step |
Hyp |
Ref |
Expression |
1 |
|
xihopellsm.b |
|
2 |
|
xihopellsm.h |
|
3 |
|
xihopellsm.t |
|
4 |
|
xihopellsm.e |
|
5 |
|
xihopellsm.a |
|
6 |
|
xihopellsm.u |
|
7 |
|
xihopellsm.l |
|
8 |
|
xihopellsm.p |
|
9 |
|
xihopellsm.i |
|
10 |
|
xihopellsm.k |
|
11 |
|
xihopellsm.x |
|
12 |
|
xihopellsm.y |
|
13 |
|
eqid |
|
14 |
1 2 9 6 13
|
dihlss |
|
15 |
10 11 14
|
syl2anc |
|
16 |
1 2 9 6 13
|
dihlss |
|
17 |
10 12 16
|
syl2anc |
|
18 |
|
eqid |
|
19 |
2 6 18 13 8
|
dvhopellsm |
|
20 |
10 15 17 19
|
syl3anc |
|
21 |
10
|
adantr |
|
22 |
11
|
adantr |
|
23 |
|
simpr |
|
24 |
1 2 3 4 9 21 22 23
|
dihopcl |
|
25 |
10
|
adantr |
|
26 |
12
|
adantr |
|
27 |
|
simpr |
|
28 |
1 2 3 4 9 25 26 27
|
dihopcl |
|
29 |
24 28
|
anim12dan |
|
30 |
10
|
adantr |
|
31 |
|
simprl |
|
32 |
|
simprr |
|
33 |
2 3 4 5 6 18
|
dvhopvadd2 |
|
34 |
30 31 32 33
|
syl3anc |
|
35 |
34
|
eqeq2d |
|
36 |
|
vex |
|
37 |
|
vex |
|
38 |
36 37
|
coex |
|
39 |
|
ovex |
|
40 |
38 39
|
opth2 |
|
41 |
35 40
|
bitrdi |
|
42 |
29 41
|
syldan |
|
43 |
42
|
pm5.32da |
|
44 |
43
|
4exbidv |
|
45 |
20 44
|
bitrd |
|