| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihlss.b |
|- B = ( Base ` K ) |
| 2 |
|
dihlss.h |
|- H = ( LHyp ` K ) |
| 3 |
|
dihlss.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 4 |
|
dihlss.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 5 |
|
dihlss.s |
|- S = ( LSubSp ` U ) |
| 6 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 7 |
|
eqid |
|- ( ( DIsoB ` K ) ` W ) = ( ( DIsoB ` K ) ` W ) |
| 8 |
1 6 2 3 7
|
dihvalb |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X ( le ` K ) W ) ) -> ( I ` X ) = ( ( ( DIsoB ` K ) ` W ) ` X ) ) |
| 9 |
1 6 2 4 7 5
|
diblss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X ( le ` K ) W ) ) -> ( ( ( DIsoB ` K ) ` W ) ` X ) e. S ) |
| 10 |
8 9
|
eqeltrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X ( le ` K ) W ) ) -> ( I ` X ) e. S ) |
| 11 |
10
|
anassrs |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B ) /\ X ( le ` K ) W ) -> ( I ` X ) e. S ) |
| 12 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 13 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 14 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 15 |
|
eqid |
|- ( ( DIsoC ` K ) ` W ) = ( ( DIsoC ` K ) ` W ) |
| 16 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
| 17 |
1 6 12 13 14 2 3 7 15 4 5 16
|
dihlsscpre |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X ( le ` K ) W ) ) -> ( I ` X ) e. S ) |
| 18 |
17
|
anassrs |
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B ) /\ -. X ( le ` K ) W ) -> ( I ` X ) e. S ) |
| 19 |
11 18
|
pm2.61dan |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` X ) e. S ) |