Description: The value of isomorphism H is a set of vectors. (Contributed by NM, 14-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dihss.b | |- B = ( Base ` K ) |
|
| dihss.h | |- H = ( LHyp ` K ) |
||
| dihss.i | |- I = ( ( DIsoH ` K ) ` W ) |
||
| dihss.u | |- U = ( ( DVecH ` K ) ` W ) |
||
| dihss.v | |- V = ( Base ` U ) |
||
| Assertion | dihss | |- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` X ) C_ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihss.b | |- B = ( Base ` K ) |
|
| 2 | dihss.h | |- H = ( LHyp ` K ) |
|
| 3 | dihss.i | |- I = ( ( DIsoH ` K ) ` W ) |
|
| 4 | dihss.u | |- U = ( ( DVecH ` K ) ` W ) |
|
| 5 | dihss.v | |- V = ( Base ` U ) |
|
| 6 | eqid | |- ( LSubSp ` U ) = ( LSubSp ` U ) |
|
| 7 | 1 2 3 4 6 | dihlss | |- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` X ) e. ( LSubSp ` U ) ) |
| 8 | 5 6 | lssss | |- ( ( I ` X ) e. ( LSubSp ` U ) -> ( I ` X ) C_ V ) |
| 9 | 7 8 | syl | |- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` X ) C_ V ) |