Metamath Proof Explorer


Theorem dihss

Description: The value of isomorphism H is a set of vectors. (Contributed by NM, 14-Mar-2014)

Ref Expression
Hypotheses dihss.b
|- B = ( Base ` K )
dihss.h
|- H = ( LHyp ` K )
dihss.i
|- I = ( ( DIsoH ` K ) ` W )
dihss.u
|- U = ( ( DVecH ` K ) ` W )
dihss.v
|- V = ( Base ` U )
Assertion dihss
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` X ) C_ V )

Proof

Step Hyp Ref Expression
1 dihss.b
 |-  B = ( Base ` K )
2 dihss.h
 |-  H = ( LHyp ` K )
3 dihss.i
 |-  I = ( ( DIsoH ` K ) ` W )
4 dihss.u
 |-  U = ( ( DVecH ` K ) ` W )
5 dihss.v
 |-  V = ( Base ` U )
6 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
7 1 2 3 4 6 dihlss
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` X ) e. ( LSubSp ` U ) )
8 5 6 lssss
 |-  ( ( I ` X ) e. ( LSubSp ` U ) -> ( I ` X ) C_ V )
9 7 8 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` X ) C_ V )