Description: The value of isomorphism H is a set of vectors. (Contributed by NM, 14-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihss.b | |- B = ( Base ` K ) |
|
dihss.h | |- H = ( LHyp ` K ) |
||
dihss.i | |- I = ( ( DIsoH ` K ) ` W ) |
||
dihss.u | |- U = ( ( DVecH ` K ) ` W ) |
||
dihss.v | |- V = ( Base ` U ) |
||
Assertion | dihss | |- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` X ) C_ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihss.b | |- B = ( Base ` K ) |
|
2 | dihss.h | |- H = ( LHyp ` K ) |
|
3 | dihss.i | |- I = ( ( DIsoH ` K ) ` W ) |
|
4 | dihss.u | |- U = ( ( DVecH ` K ) ` W ) |
|
5 | dihss.v | |- V = ( Base ` U ) |
|
6 | eqid | |- ( LSubSp ` U ) = ( LSubSp ` U ) |
|
7 | 1 2 3 4 6 | dihlss | |- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` X ) e. ( LSubSp ` U ) ) |
8 | 5 6 | lssss | |- ( ( I ` X ) e. ( LSubSp ` U ) -> ( I ` X ) C_ V ) |
9 | 7 8 | syl | |- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` X ) C_ V ) |