Metamath Proof Explorer


Theorem dihss

Description: The value of isomorphism H is a set of vectors. (Contributed by NM, 14-Mar-2014)

Ref Expression
Hypotheses dihss.b 𝐵 = ( Base ‘ 𝐾 )
dihss.h 𝐻 = ( LHyp ‘ 𝐾 )
dihss.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihss.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihss.v 𝑉 = ( Base ‘ 𝑈 )
Assertion dihss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( 𝐼𝑋 ) ⊆ 𝑉 )

Proof

Step Hyp Ref Expression
1 dihss.b 𝐵 = ( Base ‘ 𝐾 )
2 dihss.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dihss.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
4 dihss.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 dihss.v 𝑉 = ( Base ‘ 𝑈 )
6 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
7 1 2 3 4 6 dihlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( 𝐼𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) )
8 5 6 lssss ( ( 𝐼𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) → ( 𝐼𝑋 ) ⊆ 𝑉 )
9 7 8 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( 𝐼𝑋 ) ⊆ 𝑉 )