Step |
Hyp |
Ref |
Expression |
1 |
|
dihssxp.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihssxp.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dihssxp.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dihssxp.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dihssxp.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
dihssxp.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
dihssxp.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
eqid |
⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
10 |
1 2 5 8 9
|
dihss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
11 |
6 7 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
12 |
2 3 4 8 9
|
dvhvbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑇 × 𝐸 ) ) |
13 |
6 12
|
syl |
⊢ ( 𝜑 → ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑇 × 𝐸 ) ) |
14 |
11 13
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ⊆ ( 𝑇 × 𝐸 ) ) |