Metamath Proof Explorer


Theorem dihopelvalc

Description: Member of value of isomorphism H for a lattice K when -. X .<_ W , given auxiliary atom Q . (Contributed by NM, 13-Mar-2014)

Ref Expression
Hypotheses dihopelvalcp.b B=BaseK
dihopelvalcp.l ˙=K
dihopelvalcp.j ˙=joinK
dihopelvalcp.m ˙=meetK
dihopelvalcp.a A=AtomsK
dihopelvalcp.h H=LHypK
dihopelvalcp.p P=ocKW
dihopelvalcp.t T=LTrnKW
dihopelvalcp.r R=trLKW
dihopelvalcp.e E=TEndoKW
dihopelvalcp.i I=DIsoHKW
dihopelvalcp.g G=ιgT|gP=Q
dihopelvalcp.f FV
dihopelvalcp.s SV
Assertion dihopelvalc KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XFSIXFTSERFSG-1˙X

Proof

Step Hyp Ref Expression
1 dihopelvalcp.b B=BaseK
2 dihopelvalcp.l ˙=K
3 dihopelvalcp.j ˙=joinK
4 dihopelvalcp.m ˙=meetK
5 dihopelvalcp.a A=AtomsK
6 dihopelvalcp.h H=LHypK
7 dihopelvalcp.p P=ocKW
8 dihopelvalcp.t T=LTrnKW
9 dihopelvalcp.r R=trLKW
10 dihopelvalcp.e E=TEndoKW
11 dihopelvalcp.i I=DIsoHKW
12 dihopelvalcp.g G=ιgT|gP=Q
13 dihopelvalcp.f FV
14 dihopelvalcp.s SV
15 eqid hTIB=hTIB
16 eqid DIsoBKW=DIsoBKW
17 eqid DIsoCKW=DIsoCKW
18 eqid DVecHKW=DVecHKW
19 eqid +DVecHKW=+DVecHKW
20 eqid LSubSpDVecHKW=LSubSpDVecHKW
21 eqid LSSumDVecHKW=LSSumDVecHKW
22 eqid aE,bEhTahbh=aE,bEhTahbh
23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 dihopelvalcpre KHLWHXB¬X˙WQA¬Q˙WQ˙X˙W=XFSIXFTSERFSG-1˙X