Metamath Proof Explorer


Theorem dihopelvalc

Description: Member of value of isomorphism H for a lattice K when -. X .<_ W , given auxiliary atom Q . (Contributed by NM, 13-Mar-2014)

Ref Expression
Hypotheses dihopelvalcp.b B = Base K
dihopelvalcp.l ˙ = K
dihopelvalcp.j ˙ = join K
dihopelvalcp.m ˙ = meet K
dihopelvalcp.a A = Atoms K
dihopelvalcp.h H = LHyp K
dihopelvalcp.p P = oc K W
dihopelvalcp.t T = LTrn K W
dihopelvalcp.r R = trL K W
dihopelvalcp.e E = TEndo K W
dihopelvalcp.i I = DIsoH K W
dihopelvalcp.g G = ι g T | g P = Q
dihopelvalcp.f F V
dihopelvalcp.s S V
Assertion dihopelvalc K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X F S I X F T S E R F S G -1 ˙ X

Proof

Step Hyp Ref Expression
1 dihopelvalcp.b B = Base K
2 dihopelvalcp.l ˙ = K
3 dihopelvalcp.j ˙ = join K
4 dihopelvalcp.m ˙ = meet K
5 dihopelvalcp.a A = Atoms K
6 dihopelvalcp.h H = LHyp K
7 dihopelvalcp.p P = oc K W
8 dihopelvalcp.t T = LTrn K W
9 dihopelvalcp.r R = trL K W
10 dihopelvalcp.e E = TEndo K W
11 dihopelvalcp.i I = DIsoH K W
12 dihopelvalcp.g G = ι g T | g P = Q
13 dihopelvalcp.f F V
14 dihopelvalcp.s S V
15 eqid h T I B = h T I B
16 eqid DIsoB K W = DIsoB K W
17 eqid DIsoC K W = DIsoC K W
18 eqid DVecH K W = DVecH K W
19 eqid + DVecH K W = + DVecH K W
20 eqid LSubSp DVecH K W = LSubSp DVecH K W
21 eqid LSSum DVecH K W = LSSum DVecH K W
22 eqid a E , b E h T a h b h = a E , b E h T a h b h
23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 dihopelvalcpre K HL W H X B ¬ X ˙ W Q A ¬ Q ˙ W Q ˙ X ˙ W = X F S I X F T S E R F S G -1 ˙ X