Metamath Proof Explorer


Theorem dihvalcq

Description: Value of isomorphism H for a lattice K when -. X .<_ W , given auxiliary atom Q . TODO: Use dihvalcq2 (with lhpmcvr3 for ( Q .\/ ( X ./\ W ) ) = X simplification) that changes C and D to I and make this obsolete. Do to other theorems as well. (Contributed by NM, 6-Mar-2014)

Ref Expression
Hypotheses dihvalcq.b 𝐵 = ( Base ‘ 𝐾 )
dihvalcq.l = ( le ‘ 𝐾 )
dihvalcq.j = ( join ‘ 𝐾 )
dihvalcq.m = ( meet ‘ 𝐾 )
dihvalcq.a 𝐴 = ( Atoms ‘ 𝐾 )
dihvalcq.h 𝐻 = ( LHyp ‘ 𝐾 )
dihvalcq.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihvalcq.d 𝐷 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
dihvalcq.c 𝐶 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
dihvalcq.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihvalcq.p = ( LSSum ‘ 𝑈 )
Assertion dihvalcq ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐼𝑋 ) = ( ( 𝐶𝑄 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) )

Proof

Step Hyp Ref Expression
1 dihvalcq.b 𝐵 = ( Base ‘ 𝐾 )
2 dihvalcq.l = ( le ‘ 𝐾 )
3 dihvalcq.j = ( join ‘ 𝐾 )
4 dihvalcq.m = ( meet ‘ 𝐾 )
5 dihvalcq.a 𝐴 = ( Atoms ‘ 𝐾 )
6 dihvalcq.h 𝐻 = ( LHyp ‘ 𝐾 )
7 dihvalcq.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
8 dihvalcq.d 𝐷 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
9 dihvalcq.c 𝐶 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
10 dihvalcq.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
11 dihvalcq.p = ( LSSum ‘ 𝑈 )
12 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
13 1 2 3 4 5 6 7 8 9 10 12 11 dihvalcqpre ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑄 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐼𝑋 ) = ( ( 𝐶𝑄 ) ( 𝐷 ‘ ( 𝑋 𝑊 ) ) ) )