Metamath Proof Explorer


Theorem dih2dimbALTN

Description: Extend dia2dim to isomorphism H. (This version combines dib2dim and dih2dimb for shorter overall proof, but may be less easy to understand. TODO: decide which to use.) (Contributed by NM, 22-Sep-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses dih2dimb.l = ( le ‘ 𝐾 )
dih2dimb.j = ( join ‘ 𝐾 )
dih2dimb.a 𝐴 = ( Atoms ‘ 𝐾 )
dih2dimb.h 𝐻 = ( LHyp ‘ 𝐾 )
dih2dimb.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dih2dimb.s = ( LSSum ‘ 𝑈 )
dih2dimb.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dih2dimb.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dih2dimb.p ( 𝜑 → ( 𝑃𝐴𝑃 𝑊 ) )
dih2dimb.q ( 𝜑 → ( 𝑄𝐴𝑄 𝑊 ) )
Assertion dih2dimbALTN ( 𝜑 → ( 𝐼 ‘ ( 𝑃 𝑄 ) ) ⊆ ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 dih2dimb.l = ( le ‘ 𝐾 )
2 dih2dimb.j = ( join ‘ 𝐾 )
3 dih2dimb.a 𝐴 = ( Atoms ‘ 𝐾 )
4 dih2dimb.h 𝐻 = ( LHyp ‘ 𝐾 )
5 dih2dimb.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
6 dih2dimb.s = ( LSSum ‘ 𝑈 )
7 dih2dimb.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
8 dih2dimb.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 dih2dimb.p ( 𝜑 → ( 𝑃𝐴𝑃 𝑊 ) )
10 dih2dimb.q ( 𝜑 → ( 𝑄𝐴𝑄 𝑊 ) )
11 eqid ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
12 4 11 dibvalrel ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → Rel ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) )
13 8 12 syl ( 𝜑 → Rel ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) )
14 eqid ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 )
15 eqid ( LSSum ‘ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSSum ‘ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) )
16 eqid ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
17 1 2 3 4 14 15 16 8 9 10 dia2dim ( 𝜑 → ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) ⊆ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( LSSum ‘ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) )
18 17 sseld ( 𝜑 → ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) → 𝑓 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( LSSum ‘ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ) )
19 18 anim1d ( 𝜑 → ( ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) ∧ 𝑠 = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) → ( 𝑓 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( LSSum ‘ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ∧ 𝑠 = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) ) )
20 8 simpld ( 𝜑𝐾 ∈ HL )
21 9 simpld ( 𝜑𝑃𝐴 )
22 10 simpld ( 𝜑𝑄𝐴 )
23 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
24 23 2 3 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
25 20 21 22 24 syl3anc ( 𝜑 → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
26 9 simprd ( 𝜑𝑃 𝑊 )
27 10 simprd ( 𝜑𝑄 𝑊 )
28 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
29 20 28 syl ( 𝜑𝐾 ∈ Lat )
30 23 3 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
31 21 30 syl ( 𝜑𝑃 ∈ ( Base ‘ 𝐾 ) )
32 23 3 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
33 22 32 syl ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) )
34 8 simprd ( 𝜑𝑊𝐻 )
35 23 4 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
36 34 35 syl ( 𝜑𝑊 ∈ ( Base ‘ 𝐾 ) )
37 23 1 2 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 𝑊𝑄 𝑊 ) ↔ ( 𝑃 𝑄 ) 𝑊 ) )
38 29 31 33 36 37 syl13anc ( 𝜑 → ( ( 𝑃 𝑊𝑄 𝑊 ) ↔ ( 𝑃 𝑄 ) 𝑊 ) )
39 26 27 38 mpbi2and ( 𝜑 → ( 𝑃 𝑄 ) 𝑊 )
40 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
41 eqid ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) )
42 23 1 4 40 41 16 11 dibopelval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑄 ) 𝑊 ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) ↔ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) ∧ 𝑠 = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) ) )
43 8 25 39 42 syl12anc ( 𝜑 → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) ↔ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) ∧ 𝑠 = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) ) )
44 31 26 jca ( 𝜑 → ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 𝑊 ) )
45 33 27 jca ( 𝜑 → ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 𝑊 ) )
46 23 1 4 40 41 14 5 15 6 16 11 8 44 45 diblsmopel ( 𝜑 → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ↔ ( 𝑓 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( LSSum ‘ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ∧ 𝑠 = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) ) )
47 19 43 46 3imtr4d ( 𝜑 → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ) )
48 13 47 relssdv ( 𝜑 → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) ⊆ ( ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) )
49 23 1 4 7 11 dihvalb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑄 ) 𝑊 ) ) → ( 𝐼 ‘ ( 𝑃 𝑄 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) )
50 8 25 39 49 syl12anc ( 𝜑 → ( 𝐼 ‘ ( 𝑃 𝑄 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 𝑄 ) ) )
51 23 1 4 7 11 dihvalb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 𝑊 ) ) → ( 𝐼𝑃 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) )
52 8 31 26 51 syl12anc ( 𝜑 → ( 𝐼𝑃 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) )
53 23 1 4 7 11 dihvalb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) )
54 8 33 27 53 syl12anc ( 𝜑 → ( 𝐼𝑄 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) )
55 52 54 oveq12d ( 𝜑 → ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) = ( ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) )
56 48 50 55 3sstr4d ( 𝜑 → ( 𝐼 ‘ ( 𝑃 𝑄 ) ) ⊆ ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) )