Step |
Hyp |
Ref |
Expression |
1 |
|
dih2dimb.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
dih2dimb.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
dih2dimb.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
dih2dimb.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
dih2dimb.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
dih2dimb.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
7 |
|
dih2dimb.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dih2dimb.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
dih2dimb.p |
⊢ ( 𝜑 → ( 𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊 ) ) |
10 |
|
dih2dimb.q |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊 ) ) |
11 |
|
eqid |
⊢ ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
4 11
|
dibvalrel |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → Rel ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ) |
13 |
8 12
|
syl |
⊢ ( 𝜑 → Rel ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ) |
14 |
|
eqid |
⊢ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
eqid |
⊢ ( LSSum ‘ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSSum ‘ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) ) |
16 |
|
eqid |
⊢ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
17 |
1 2 3 4 14 15 16 8 9 10
|
dia2dim |
⊢ ( 𝜑 → ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ⊆ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( LSSum ‘ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ) |
18 |
17
|
sseld |
⊢ ( 𝜑 → ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ∨ 𝑄 ) ) → 𝑓 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( LSSum ‘ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ) ) |
19 |
18
|
anim1d |
⊢ ( 𝜑 → ( ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑠 = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) → ( 𝑓 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( LSSum ‘ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ∧ 𝑠 = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) ) ) |
20 |
8
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
21 |
9
|
simpld |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
22 |
10
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
24 |
23 2 3
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
25 |
20 21 22 24
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
26 |
9
|
simprd |
⊢ ( 𝜑 → 𝑃 ≤ 𝑊 ) |
27 |
10
|
simprd |
⊢ ( 𝜑 → 𝑄 ≤ 𝑊 ) |
28 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
29 |
20 28
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
30 |
23 3
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
31 |
21 30
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
32 |
23 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
33 |
22 32
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
34 |
8
|
simprd |
⊢ ( 𝜑 → 𝑊 ∈ 𝐻 ) |
35 |
23 4
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
36 |
34 35
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
37 |
23 1 2
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ≤ 𝑊 ∧ 𝑄 ≤ 𝑊 ) ↔ ( 𝑃 ∨ 𝑄 ) ≤ 𝑊 ) ) |
38 |
29 31 33 36 37
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑃 ≤ 𝑊 ∧ 𝑄 ≤ 𝑊 ) ↔ ( 𝑃 ∨ 𝑄 ) ≤ 𝑊 ) ) |
39 |
26 27 38
|
mpbi2and |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑄 ) ≤ 𝑊 ) |
40 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
41 |
|
eqid |
⊢ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) |
42 |
23 1 4 40 41 16 11
|
dibopelval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑄 ) ≤ 𝑊 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ↔ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑠 = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) ) ) |
43 |
8 25 39 42
|
syl12anc |
⊢ ( 𝜑 → ( 〈 𝑓 , 𝑠 〉 ∈ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ↔ ( 𝑓 ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑠 = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) ) ) |
44 |
31 26
|
jca |
⊢ ( 𝜑 → ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ≤ 𝑊 ) ) |
45 |
33 27
|
jca |
⊢ ( 𝜑 → ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ≤ 𝑊 ) ) |
46 |
23 1 4 40 41 14 5 15 6 16 11 8 44 45
|
diblsmopel |
⊢ ( 𝜑 → ( 〈 𝑓 , 𝑠 〉 ∈ ( ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ⊕ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ↔ ( 𝑓 ∈ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ( LSSum ‘ ( ( DVecA ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ∧ 𝑠 = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ) ) ) |
47 |
19 43 46
|
3imtr4d |
⊢ ( 𝜑 → ( 〈 𝑓 , 𝑠 〉 ∈ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ∨ 𝑄 ) ) → 〈 𝑓 , 𝑠 〉 ∈ ( ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ⊕ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ) ) |
48 |
13 47
|
relssdv |
⊢ ( 𝜑 → ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ⊆ ( ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ⊕ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ) |
49 |
23 1 4 7 11
|
dihvalb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑄 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ) |
50 |
8 25 39 49
|
syl12anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ) |
51 |
23 1 4 7 11
|
dihvalb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑃 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ) |
52 |
8 31 26 51
|
syl12anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑃 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ) |
53 |
23 1 4 7 11
|
dihvalb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) |
54 |
8 33 27 53
|
syl12anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑄 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) |
55 |
52 54
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) = ( ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑃 ) ⊕ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) ) |
56 |
48 50 55
|
3sstr4d |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑃 ∨ 𝑄 ) ) ⊆ ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) ) |