| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dih1dimc.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
dih1dimc.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 3 |
|
dih1dimc.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
dih1dimc.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dih1dimc.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
dih1dimc.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
dih1dimc.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
dih1dimc.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 9 |
|
dih1dimc.f |
⊢ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ) |
| 10 |
|
eqid |
⊢ ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
| 11 |
1 2 3 10 6
|
dihvalcqat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) = ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) ) |
| 12 |
1 2 3 4 5 10 7 8 9
|
diclspsn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑄 ) = ( 𝑁 ‘ { 〈 𝐹 , ( I ↾ 𝑇 ) 〉 } ) ) |
| 13 |
11 12
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 〈 𝐹 , ( I ↾ 𝑇 ) 〉 } ) ) |