Metamath Proof Explorer


Theorem dih1dimc

Description: Isomorphism H at an atom not under W . (Contributed by NM, 27-Apr-2014)

Ref Expression
Hypotheses dih1dimc.l
|- .<_ = ( le ` K )
dih1dimc.a
|- A = ( Atoms ` K )
dih1dimc.h
|- H = ( LHyp ` K )
dih1dimc.p
|- P = ( ( oc ` K ) ` W )
dih1dimc.t
|- T = ( ( LTrn ` K ) ` W )
dih1dimc.i
|- I = ( ( DIsoH ` K ) ` W )
dih1dimc.u
|- U = ( ( DVecH ` K ) ` W )
dih1dimc.n
|- N = ( LSpan ` U )
dih1dimc.f
|- F = ( iota_ f e. T ( f ` P ) = Q )
Assertion dih1dimc
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = ( N ` { <. F , ( _I |` T ) >. } ) )

Proof

Step Hyp Ref Expression
1 dih1dimc.l
 |-  .<_ = ( le ` K )
2 dih1dimc.a
 |-  A = ( Atoms ` K )
3 dih1dimc.h
 |-  H = ( LHyp ` K )
4 dih1dimc.p
 |-  P = ( ( oc ` K ) ` W )
5 dih1dimc.t
 |-  T = ( ( LTrn ` K ) ` W )
6 dih1dimc.i
 |-  I = ( ( DIsoH ` K ) ` W )
7 dih1dimc.u
 |-  U = ( ( DVecH ` K ) ` W )
8 dih1dimc.n
 |-  N = ( LSpan ` U )
9 dih1dimc.f
 |-  F = ( iota_ f e. T ( f ` P ) = Q )
10 eqid
 |-  ( ( DIsoC ` K ) ` W ) = ( ( DIsoC ` K ) ` W )
11 1 2 3 10 6 dihvalcqat
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = ( ( ( DIsoC ` K ) ` W ) ` Q ) )
12 1 2 3 4 5 10 7 8 9 diclspsn
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( ( DIsoC ` K ) ` W ) ` Q ) = ( N ` { <. F , ( _I |` T ) >. } ) )
13 11 12 eqtrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = ( N ` { <. F , ( _I |` T ) >. } ) )