Step |
Hyp |
Ref |
Expression |
1 |
|
dih1dimc.l |
|- .<_ = ( le ` K ) |
2 |
|
dih1dimc.a |
|- A = ( Atoms ` K ) |
3 |
|
dih1dimc.h |
|- H = ( LHyp ` K ) |
4 |
|
dih1dimc.p |
|- P = ( ( oc ` K ) ` W ) |
5 |
|
dih1dimc.t |
|- T = ( ( LTrn ` K ) ` W ) |
6 |
|
dih1dimc.i |
|- I = ( ( DIsoH ` K ) ` W ) |
7 |
|
dih1dimc.u |
|- U = ( ( DVecH ` K ) ` W ) |
8 |
|
dih1dimc.n |
|- N = ( LSpan ` U ) |
9 |
|
dih1dimc.f |
|- F = ( iota_ f e. T ( f ` P ) = Q ) |
10 |
|
eqid |
|- ( ( DIsoC ` K ) ` W ) = ( ( DIsoC ` K ) ` W ) |
11 |
1 2 3 10 6
|
dihvalcqat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = ( ( ( DIsoC ` K ) ` W ) ` Q ) ) |
12 |
1 2 3 4 5 10 7 8 9
|
diclspsn |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( ( DIsoC ` K ) ` W ) ` Q ) = ( N ` { <. F , ( _I |` T ) >. } ) ) |
13 |
11 12
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = ( N ` { <. F , ( _I |` T ) >. } ) ) |