| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dih1dimc.l |
|- .<_ = ( le ` K ) |
| 2 |
|
dih1dimc.a |
|- A = ( Atoms ` K ) |
| 3 |
|
dih1dimc.h |
|- H = ( LHyp ` K ) |
| 4 |
|
dih1dimc.p |
|- P = ( ( oc ` K ) ` W ) |
| 5 |
|
dih1dimc.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 6 |
|
dih1dimc.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 7 |
|
dih1dimc.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 8 |
|
dih1dimc.n |
|- N = ( LSpan ` U ) |
| 9 |
|
dih1dimc.f |
|- F = ( iota_ f e. T ( f ` P ) = Q ) |
| 10 |
|
eqid |
|- ( ( DIsoC ` K ) ` W ) = ( ( DIsoC ` K ) ` W ) |
| 11 |
1 2 3 10 6
|
dihvalcqat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = ( ( ( DIsoC ` K ) ` W ) ` Q ) ) |
| 12 |
1 2 3 4 5 10 7 8 9
|
diclspsn |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( ( DIsoC ` K ) ` W ) ` Q ) = ( N ` { <. F , ( _I |` T ) >. } ) ) |
| 13 |
11 12
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = ( N ` { <. F , ( _I |` T ) >. } ) ) |