Description: Subgroup sum with the zero subgroup. (Contributed by NM, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsm01.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| lsm01.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| Assertion | lsm01 | ⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑋 ⊕ { 0 } ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsm01.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | lsm01.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 3 | subgrcl | ⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 4 | 1 | 0subg | ⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 | 3 4 | syl | ⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝐺 ) → { 0 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 6 | 1 | subg0cl | ⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝐺 ) → 0 ∈ 𝑋 ) |
| 7 | 6 | snssd | ⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝐺 ) → { 0 } ⊆ 𝑋 ) |
| 8 | 2 | lsmss2 | ⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝐺 ) ∧ { 0 } ∈ ( SubGrp ‘ 𝐺 ) ∧ { 0 } ⊆ 𝑋 ) → ( 𝑋 ⊕ { 0 } ) = 𝑋 ) |
| 9 | 5 7 8 | mpd3an23 | ⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑋 ⊕ { 0 } ) = 𝑋 ) |