Metamath Proof Explorer


Theorem lsm01

Description: Subgroup sum with the zero subgroup. (Contributed by NM, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsm01.z 0 = ( 0g𝐺 )
lsm01.p = ( LSSum ‘ 𝐺 )
Assertion lsm01 ( 𝑋 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑋 { 0 } ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 lsm01.z 0 = ( 0g𝐺 )
2 lsm01.p = ( LSSum ‘ 𝐺 )
3 subgrcl ( 𝑋 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
4 1 0subg ( 𝐺 ∈ Grp → { 0 } ∈ ( SubGrp ‘ 𝐺 ) )
5 3 4 syl ( 𝑋 ∈ ( SubGrp ‘ 𝐺 ) → { 0 } ∈ ( SubGrp ‘ 𝐺 ) )
6 1 subg0cl ( 𝑋 ∈ ( SubGrp ‘ 𝐺 ) → 0𝑋 )
7 6 snssd ( 𝑋 ∈ ( SubGrp ‘ 𝐺 ) → { 0 } ⊆ 𝑋 )
8 2 lsmss2 ( ( 𝑋 ∈ ( SubGrp ‘ 𝐺 ) ∧ { 0 } ∈ ( SubGrp ‘ 𝐺 ) ∧ { 0 } ⊆ 𝑋 ) → ( 𝑋 { 0 } ) = 𝑋 )
9 5 7 8 mpd3an23 ( 𝑋 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑋 { 0 } ) = 𝑋 )