Step |
Hyp |
Ref |
Expression |
1 |
|
dihlatat.a |
|- A = ( Atoms ` K ) |
2 |
|
dihlatat.h |
|- H = ( LHyp ` K ) |
3 |
|
dihlatat.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
dihlatat.i |
|- I = ( ( DIsoH ` K ) ` W ) |
5 |
|
dihlatat.l |
|- L = ( LSAtoms ` U ) |
6 |
|
id |
|- ( ( K e. HL /\ W e. H ) -> ( K e. HL /\ W e. H ) ) |
7 |
2 3 6
|
dvhlvec |
|- ( ( K e. HL /\ W e. H ) -> U e. LVec ) |
8 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
9 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
10 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
11 |
8 9 10 5
|
islsat |
|- ( U e. LVec -> ( Q e. L <-> E. v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) Q = ( ( LSpan ` U ) ` { v } ) ) ) |
12 |
7 11
|
syl |
|- ( ( K e. HL /\ W e. H ) -> ( Q e. L <-> E. v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) Q = ( ( LSpan ` U ) ` { v } ) ) ) |
13 |
12
|
biimpa |
|- ( ( ( K e. HL /\ W e. H ) /\ Q e. L ) -> E. v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) Q = ( ( LSpan ` U ) ` { v } ) ) |
14 |
|
eldifsn |
|- ( v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) <-> ( v e. ( Base ` U ) /\ v =/= ( 0g ` U ) ) ) |
15 |
1 2 3 8 10 9 4
|
dihlspsnat |
|- ( ( ( K e. HL /\ W e. H ) /\ v e. ( Base ` U ) /\ v =/= ( 0g ` U ) ) -> ( `' I ` ( ( LSpan ` U ) ` { v } ) ) e. A ) |
16 |
15
|
3expb |
|- ( ( ( K e. HL /\ W e. H ) /\ ( v e. ( Base ` U ) /\ v =/= ( 0g ` U ) ) ) -> ( `' I ` ( ( LSpan ` U ) ` { v } ) ) e. A ) |
17 |
14 16
|
sylan2b |
|- ( ( ( K e. HL /\ W e. H ) /\ v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) ) -> ( `' I ` ( ( LSpan ` U ) ` { v } ) ) e. A ) |
18 |
|
fveq2 |
|- ( Q = ( ( LSpan ` U ) ` { v } ) -> ( `' I ` Q ) = ( `' I ` ( ( LSpan ` U ) ` { v } ) ) ) |
19 |
18
|
eleq1d |
|- ( Q = ( ( LSpan ` U ) ` { v } ) -> ( ( `' I ` Q ) e. A <-> ( `' I ` ( ( LSpan ` U ) ` { v } ) ) e. A ) ) |
20 |
17 19
|
syl5ibrcom |
|- ( ( ( K e. HL /\ W e. H ) /\ v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) ) -> ( Q = ( ( LSpan ` U ) ` { v } ) -> ( `' I ` Q ) e. A ) ) |
21 |
20
|
rexlimdva |
|- ( ( K e. HL /\ W e. H ) -> ( E. v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) Q = ( ( LSpan ` U ) ` { v } ) -> ( `' I ` Q ) e. A ) ) |
22 |
21
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ Q e. L ) -> ( E. v e. ( ( Base ` U ) \ { ( 0g ` U ) } ) Q = ( ( LSpan ` U ) ` { v } ) -> ( `' I ` Q ) e. A ) ) |
23 |
13 22
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ Q e. L ) -> ( `' I ` Q ) e. A ) |