Step |
Hyp |
Ref |
Expression |
1 |
|
dihatexv.b |
|- B = ( Base ` K ) |
2 |
|
dihatexv.a |
|- A = ( Atoms ` K ) |
3 |
|
dihatexv.h |
|- H = ( LHyp ` K ) |
4 |
|
dihatexv.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
dihatexv.v |
|- V = ( Base ` U ) |
6 |
|
dihatexv.o |
|- .0. = ( 0g ` U ) |
7 |
|
dihatexv.n |
|- N = ( LSpan ` U ) |
8 |
|
dihatexv.i |
|- I = ( ( DIsoH ` K ) ` W ) |
9 |
|
dihatexv.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
dihatexv.q |
|- ( ph -> Q e. B ) |
11 |
9
|
ad2antrr |
|- ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) -> ( K e. HL /\ W e. H ) ) |
12 |
|
simplr |
|- ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) -> Q e. A ) |
13 |
|
simpr |
|- ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) -> Q ( le ` K ) W ) |
14 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
15 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
16 |
|
eqid |
|- ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) |
17 |
1 14 2 3 15 16 4 8 7
|
dih1dimb2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ Q ( le ` K ) W ) ) -> E. g e. ( ( LTrn ` K ) ` W ) ( g =/= ( _I |` B ) /\ ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) ) |
18 |
11 12 13 17
|
syl12anc |
|- ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) -> E. g e. ( ( LTrn ` K ) ` W ) ( g =/= ( _I |` B ) /\ ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) ) |
19 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> ( K e. HL /\ W e. H ) ) |
20 |
|
simpr |
|- ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> g e. ( ( LTrn ` K ) ` W ) ) |
21 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
22 |
1 3 15 21 16
|
tendo0cl |
|- ( ( K e. HL /\ W e. H ) -> ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) e. ( ( TEndo ` K ) ` W ) ) |
23 |
19 22
|
syl |
|- ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) e. ( ( TEndo ` K ) ` W ) ) |
24 |
3 15 21 4 5
|
dvhelvbasei |
|- ( ( ( K e. HL /\ W e. H ) /\ ( g e. ( ( LTrn ` K ) ` W ) /\ ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) e. ( ( TEndo ` K ) ` W ) ) ) -> <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. e. V ) |
25 |
19 20 23 24
|
syl12anc |
|- ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. e. V ) |
26 |
|
sneq |
|- ( x = <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. -> { x } = { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) |
27 |
26
|
fveq2d |
|- ( x = <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. -> ( N ` { x } ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) |
28 |
27
|
rspceeqv |
|- ( ( <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. e. V /\ ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) |
29 |
25 28
|
sylan |
|- ( ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) /\ ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) |
30 |
29
|
ex |
|- ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> ( ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) ) |
31 |
30
|
adantld |
|- ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> ( ( g =/= ( _I |` B ) /\ ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) ) |
32 |
31
|
rexlimdva |
|- ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) -> ( E. g e. ( ( LTrn ` K ) ` W ) ( g =/= ( _I |` B ) /\ ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) ) |
33 |
18 32
|
mpd |
|- ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) |
34 |
9
|
ad2antrr |
|- ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> ( K e. HL /\ W e. H ) ) |
35 |
|
eqid |
|- ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) |
36 |
14 2 3 35
|
lhpocnel2 |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) ( le ` K ) W ) ) |
37 |
34 36
|
syl |
|- ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) ( le ` K ) W ) ) |
38 |
|
simplr |
|- ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> Q e. A ) |
39 |
|
simpr |
|- ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> -. Q ( le ` K ) W ) |
40 |
|
eqid |
|- ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) = ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) |
41 |
14 2 3 15 40
|
ltrniotacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) ( le ` K ) W ) /\ ( Q e. A /\ -. Q ( le ` K ) W ) ) -> ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) |
42 |
34 37 38 39 41
|
syl112anc |
|- ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) |
43 |
3 15 21
|
tendoidcl |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` ( ( LTrn ` K ) ` W ) ) e. ( ( TEndo ` K ) ` W ) ) |
44 |
34 43
|
syl |
|- ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> ( _I |` ( ( LTrn ` K ) ` W ) ) e. ( ( TEndo ` K ) ` W ) ) |
45 |
3 15 21 4 5
|
dvhelvbasei |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) /\ ( _I |` ( ( LTrn ` K ) ` W ) ) e. ( ( TEndo ` K ) ` W ) ) ) -> <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. e. V ) |
46 |
34 42 44 45
|
syl12anc |
|- ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. e. V ) |
47 |
14 2 3 35 15 8 4 7 40
|
dih1dimc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q ( le ` K ) W ) ) -> ( I ` Q ) = ( N ` { <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) ) |
48 |
34 38 39 47
|
syl12anc |
|- ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> ( I ` Q ) = ( N ` { <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) ) |
49 |
|
sneq |
|- ( x = <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. -> { x } = { <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) |
50 |
49
|
fveq2d |
|- ( x = <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. -> ( N ` { x } ) = ( N ` { <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) ) |
51 |
50
|
rspceeqv |
|- ( ( <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. e. V /\ ( I ` Q ) = ( N ` { <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) |
52 |
46 48 51
|
syl2anc |
|- ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) |
53 |
33 52
|
pm2.61dan |
|- ( ( ph /\ Q e. A ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) |
54 |
9
|
simpld |
|- ( ph -> K e. HL ) |
55 |
54
|
ad3antrrr |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> K e. HL ) |
56 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
57 |
55 56
|
syl |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> K e. AtLat ) |
58 |
|
simpllr |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> Q e. A ) |
59 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
60 |
59 2
|
atn0 |
|- ( ( K e. AtLat /\ Q e. A ) -> Q =/= ( 0. ` K ) ) |
61 |
57 58 60
|
syl2anc |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> Q =/= ( 0. ` K ) ) |
62 |
|
sneq |
|- ( x = .0. -> { x } = { .0. } ) |
63 |
62
|
fveq2d |
|- ( x = .0. -> ( N ` { x } ) = ( N ` { .0. } ) ) |
64 |
63
|
3ad2ant3 |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( N ` { x } ) = ( N ` { .0. } ) ) |
65 |
|
simp1ll |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ph ) |
66 |
3 4 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
67 |
6 7
|
lspsn0 |
|- ( U e. LMod -> ( N ` { .0. } ) = { .0. } ) |
68 |
65 66 67
|
3syl |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( N ` { .0. } ) = { .0. } ) |
69 |
64 68
|
eqtrd |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( N ` { x } ) = { .0. } ) |
70 |
|
simp2 |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( I ` Q ) = ( N ` { x } ) ) |
71 |
59 3 8 4 6
|
dih0 |
|- ( ( K e. HL /\ W e. H ) -> ( I ` ( 0. ` K ) ) = { .0. } ) |
72 |
65 9 71
|
3syl |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( I ` ( 0. ` K ) ) = { .0. } ) |
73 |
69 70 72
|
3eqtr4d |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( I ` Q ) = ( I ` ( 0. ` K ) ) ) |
74 |
65 9
|
syl |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( K e. HL /\ W e. H ) ) |
75 |
65 10
|
syl |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> Q e. B ) |
76 |
65 54
|
syl |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> K e. HL ) |
77 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
78 |
1 59
|
op0cl |
|- ( K e. OP -> ( 0. ` K ) e. B ) |
79 |
76 77 78
|
3syl |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( 0. ` K ) e. B ) |
80 |
1 3 8
|
dih11 |
|- ( ( ( K e. HL /\ W e. H ) /\ Q e. B /\ ( 0. ` K ) e. B ) -> ( ( I ` Q ) = ( I ` ( 0. ` K ) ) <-> Q = ( 0. ` K ) ) ) |
81 |
74 75 79 80
|
syl3anc |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( ( I ` Q ) = ( I ` ( 0. ` K ) ) <-> Q = ( 0. ` K ) ) ) |
82 |
73 81
|
mpbid |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> Q = ( 0. ` K ) ) |
83 |
82
|
3expia |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> ( x = .0. -> Q = ( 0. ` K ) ) ) |
84 |
83
|
necon3d |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> ( Q =/= ( 0. ` K ) -> x =/= .0. ) ) |
85 |
61 84
|
mpd |
|- ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> x =/= .0. ) |
86 |
85
|
ex |
|- ( ( ( ph /\ Q e. A ) /\ x e. V ) -> ( ( I ` Q ) = ( N ` { x } ) -> x =/= .0. ) ) |
87 |
86
|
ancrd |
|- ( ( ( ph /\ Q e. A ) /\ x e. V ) -> ( ( I ` Q ) = ( N ` { x } ) -> ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) ) |
88 |
87
|
reximdva |
|- ( ( ph /\ Q e. A ) -> ( E. x e. V ( I ` Q ) = ( N ` { x } ) -> E. x e. V ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) ) |
89 |
53 88
|
mpd |
|- ( ( ph /\ Q e. A ) -> E. x e. V ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) |
90 |
89
|
ex |
|- ( ph -> ( Q e. A -> E. x e. V ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) ) |
91 |
9
|
ad2antrr |
|- ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> ( K e. HL /\ W e. H ) ) |
92 |
10
|
ad2antrr |
|- ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> Q e. B ) |
93 |
1 3 8
|
dihcnvid1 |
|- ( ( ( K e. HL /\ W e. H ) /\ Q e. B ) -> ( `' I ` ( I ` Q ) ) = Q ) |
94 |
91 92 93
|
syl2anc |
|- ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> ( `' I ` ( I ` Q ) ) = Q ) |
95 |
|
fveq2 |
|- ( ( I ` Q ) = ( N ` { x } ) -> ( `' I ` ( I ` Q ) ) = ( `' I ` ( N ` { x } ) ) ) |
96 |
95
|
ad2antll |
|- ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> ( `' I ` ( I ` Q ) ) = ( `' I ` ( N ` { x } ) ) ) |
97 |
94 96
|
eqtr3d |
|- ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> Q = ( `' I ` ( N ` { x } ) ) ) |
98 |
66
|
ad2antrr |
|- ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> U e. LMod ) |
99 |
|
simplr |
|- ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> x e. V ) |
100 |
|
simprl |
|- ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> x =/= .0. ) |
101 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
102 |
5 7 6 101
|
lsatlspsn2 |
|- ( ( U e. LMod /\ x e. V /\ x =/= .0. ) -> ( N ` { x } ) e. ( LSAtoms ` U ) ) |
103 |
98 99 100 102
|
syl3anc |
|- ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> ( N ` { x } ) e. ( LSAtoms ` U ) ) |
104 |
2 3 4 8 101
|
dihlatat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( N ` { x } ) e. ( LSAtoms ` U ) ) -> ( `' I ` ( N ` { x } ) ) e. A ) |
105 |
91 103 104
|
syl2anc |
|- ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> ( `' I ` ( N ` { x } ) ) e. A ) |
106 |
97 105
|
eqeltrd |
|- ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> Q e. A ) |
107 |
106
|
ex |
|- ( ( ph /\ x e. V ) -> ( ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) -> Q e. A ) ) |
108 |
107
|
rexlimdva |
|- ( ph -> ( E. x e. V ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) -> Q e. A ) ) |
109 |
90 108
|
impbid |
|- ( ph -> ( Q e. A <-> E. x e. V ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) ) |
110 |
|
rexdifsn |
|- ( E. x e. ( V \ { .0. } ) ( I ` Q ) = ( N ` { x } ) <-> E. x e. V ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) |
111 |
109 110
|
bitr4di |
|- ( ph -> ( Q e. A <-> E. x e. ( V \ { .0. } ) ( I ` Q ) = ( N ` { x } ) ) ) |