| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dihatexv.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | dihatexv.a |  |-  A = ( Atoms ` K ) | 
						
							| 3 |  | dihatexv.h |  |-  H = ( LHyp ` K ) | 
						
							| 4 |  | dihatexv.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 5 |  | dihatexv.v |  |-  V = ( Base ` U ) | 
						
							| 6 |  | dihatexv.o |  |-  .0. = ( 0g ` U ) | 
						
							| 7 |  | dihatexv.n |  |-  N = ( LSpan ` U ) | 
						
							| 8 |  | dihatexv.i |  |-  I = ( ( DIsoH ` K ) ` W ) | 
						
							| 9 |  | dihatexv.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | dihatexv.q |  |-  ( ph -> Q e. B ) | 
						
							| 11 | 9 | ad2antrr |  |-  ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | simplr |  |-  ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) -> Q e. A ) | 
						
							| 13 |  | simpr |  |-  ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) -> Q ( le ` K ) W ) | 
						
							| 14 |  | eqid |  |-  ( le ` K ) = ( le ` K ) | 
						
							| 15 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 16 |  | eqid |  |-  ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) | 
						
							| 17 | 1 14 2 3 15 16 4 8 7 | dih1dimb2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ Q ( le ` K ) W ) ) -> E. g e. ( ( LTrn ` K ) ` W ) ( g =/= ( _I |` B ) /\ ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) ) | 
						
							| 18 | 11 12 13 17 | syl12anc |  |-  ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) -> E. g e. ( ( LTrn ` K ) ` W ) ( g =/= ( _I |` B ) /\ ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) ) | 
						
							| 19 | 9 | ad3antrrr |  |-  ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 20 |  | simpr |  |-  ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> g e. ( ( LTrn ` K ) ` W ) ) | 
						
							| 21 |  | eqid |  |-  ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) | 
						
							| 22 | 1 3 15 21 16 | tendo0cl |  |-  ( ( K e. HL /\ W e. H ) -> ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) e. ( ( TEndo ` K ) ` W ) ) | 
						
							| 23 | 19 22 | syl |  |-  ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) e. ( ( TEndo ` K ) ` W ) ) | 
						
							| 24 | 3 15 21 4 5 | dvhelvbasei |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( g e. ( ( LTrn ` K ) ` W ) /\ ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) e. ( ( TEndo ` K ) ` W ) ) ) -> <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. e. V ) | 
						
							| 25 | 19 20 23 24 | syl12anc |  |-  ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. e. V ) | 
						
							| 26 |  | sneq |  |-  ( x = <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. -> { x } = { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) | 
						
							| 27 | 26 | fveq2d |  |-  ( x = <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. -> ( N ` { x } ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) | 
						
							| 28 | 27 | rspceeqv |  |-  ( ( <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. e. V /\ ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) | 
						
							| 29 | 25 28 | sylan |  |-  ( ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) /\ ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) | 
						
							| 30 | 29 | ex |  |-  ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> ( ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) ) | 
						
							| 31 | 30 | adantld |  |-  ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> ( ( g =/= ( _I |` B ) /\ ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) ) | 
						
							| 32 | 31 | rexlimdva |  |-  ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) -> ( E. g e. ( ( LTrn ` K ) ` W ) ( g =/= ( _I |` B ) /\ ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) ) | 
						
							| 33 | 18 32 | mpd |  |-  ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) | 
						
							| 34 | 9 | ad2antrr |  |-  ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 35 |  | eqid |  |-  ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) | 
						
							| 36 | 14 2 3 35 | lhpocnel2 |  |-  ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) ( le ` K ) W ) ) | 
						
							| 37 | 34 36 | syl |  |-  ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) ( le ` K ) W ) ) | 
						
							| 38 |  | simplr |  |-  ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> Q e. A ) | 
						
							| 39 |  | simpr |  |-  ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> -. Q ( le ` K ) W ) | 
						
							| 40 |  | eqid |  |-  ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) = ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) | 
						
							| 41 | 14 2 3 15 40 | ltrniotacl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) ( le ` K ) W ) /\ ( Q e. A /\ -. Q ( le ` K ) W ) ) -> ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) | 
						
							| 42 | 34 37 38 39 41 | syl112anc |  |-  ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) | 
						
							| 43 | 3 15 21 | tendoidcl |  |-  ( ( K e. HL /\ W e. H ) -> ( _I |` ( ( LTrn ` K ) ` W ) ) e. ( ( TEndo ` K ) ` W ) ) | 
						
							| 44 | 34 43 | syl |  |-  ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> ( _I |` ( ( LTrn ` K ) ` W ) ) e. ( ( TEndo ` K ) ` W ) ) | 
						
							| 45 | 3 15 21 4 5 | dvhelvbasei |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) /\ ( _I |` ( ( LTrn ` K ) ` W ) ) e. ( ( TEndo ` K ) ` W ) ) ) -> <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. e. V ) | 
						
							| 46 | 34 42 44 45 | syl12anc |  |-  ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. e. V ) | 
						
							| 47 | 14 2 3 35 15 8 4 7 40 | dih1dimc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q ( le ` K ) W ) ) -> ( I ` Q ) = ( N ` { <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) ) | 
						
							| 48 | 34 38 39 47 | syl12anc |  |-  ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> ( I ` Q ) = ( N ` { <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) ) | 
						
							| 49 |  | sneq |  |-  ( x = <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. -> { x } = { <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) | 
						
							| 50 | 49 | fveq2d |  |-  ( x = <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. -> ( N ` { x } ) = ( N ` { <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) ) | 
						
							| 51 | 50 | rspceeqv |  |-  ( ( <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. e. V /\ ( I ` Q ) = ( N ` { <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) | 
						
							| 52 | 46 48 51 | syl2anc |  |-  ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) | 
						
							| 53 | 33 52 | pm2.61dan |  |-  ( ( ph /\ Q e. A ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) | 
						
							| 54 | 9 | simpld |  |-  ( ph -> K e. HL ) | 
						
							| 55 | 54 | ad3antrrr |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> K e. HL ) | 
						
							| 56 |  | hlatl |  |-  ( K e. HL -> K e. AtLat ) | 
						
							| 57 | 55 56 | syl |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> K e. AtLat ) | 
						
							| 58 |  | simpllr |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> Q e. A ) | 
						
							| 59 |  | eqid |  |-  ( 0. ` K ) = ( 0. ` K ) | 
						
							| 60 | 59 2 | atn0 |  |-  ( ( K e. AtLat /\ Q e. A ) -> Q =/= ( 0. ` K ) ) | 
						
							| 61 | 57 58 60 | syl2anc |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> Q =/= ( 0. ` K ) ) | 
						
							| 62 |  | sneq |  |-  ( x = .0. -> { x } = { .0. } ) | 
						
							| 63 | 62 | fveq2d |  |-  ( x = .0. -> ( N ` { x } ) = ( N ` { .0. } ) ) | 
						
							| 64 | 63 | 3ad2ant3 |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( N ` { x } ) = ( N ` { .0. } ) ) | 
						
							| 65 |  | simp1ll |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ph ) | 
						
							| 66 | 3 4 9 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 67 | 6 7 | lspsn0 |  |-  ( U e. LMod -> ( N ` { .0. } ) = { .0. } ) | 
						
							| 68 | 65 66 67 | 3syl |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( N ` { .0. } ) = { .0. } ) | 
						
							| 69 | 64 68 | eqtrd |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( N ` { x } ) = { .0. } ) | 
						
							| 70 |  | simp2 |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( I ` Q ) = ( N ` { x } ) ) | 
						
							| 71 | 59 3 8 4 6 | dih0 |  |-  ( ( K e. HL /\ W e. H ) -> ( I ` ( 0. ` K ) ) = { .0. } ) | 
						
							| 72 | 65 9 71 | 3syl |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( I ` ( 0. ` K ) ) = { .0. } ) | 
						
							| 73 | 69 70 72 | 3eqtr4d |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( I ` Q ) = ( I ` ( 0. ` K ) ) ) | 
						
							| 74 | 65 9 | syl |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 75 | 65 10 | syl |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> Q e. B ) | 
						
							| 76 | 65 54 | syl |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> K e. HL ) | 
						
							| 77 |  | hlop |  |-  ( K e. HL -> K e. OP ) | 
						
							| 78 | 1 59 | op0cl |  |-  ( K e. OP -> ( 0. ` K ) e. B ) | 
						
							| 79 | 76 77 78 | 3syl |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( 0. ` K ) e. B ) | 
						
							| 80 | 1 3 8 | dih11 |  |-  ( ( ( K e. HL /\ W e. H ) /\ Q e. B /\ ( 0. ` K ) e. B ) -> ( ( I ` Q ) = ( I ` ( 0. ` K ) ) <-> Q = ( 0. ` K ) ) ) | 
						
							| 81 | 74 75 79 80 | syl3anc |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( ( I ` Q ) = ( I ` ( 0. ` K ) ) <-> Q = ( 0. ` K ) ) ) | 
						
							| 82 | 73 81 | mpbid |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> Q = ( 0. ` K ) ) | 
						
							| 83 | 82 | 3expia |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> ( x = .0. -> Q = ( 0. ` K ) ) ) | 
						
							| 84 | 83 | necon3d |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> ( Q =/= ( 0. ` K ) -> x =/= .0. ) ) | 
						
							| 85 | 61 84 | mpd |  |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> x =/= .0. ) | 
						
							| 86 | 85 | ex |  |-  ( ( ( ph /\ Q e. A ) /\ x e. V ) -> ( ( I ` Q ) = ( N ` { x } ) -> x =/= .0. ) ) | 
						
							| 87 | 86 | ancrd |  |-  ( ( ( ph /\ Q e. A ) /\ x e. V ) -> ( ( I ` Q ) = ( N ` { x } ) -> ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) ) | 
						
							| 88 | 87 | reximdva |  |-  ( ( ph /\ Q e. A ) -> ( E. x e. V ( I ` Q ) = ( N ` { x } ) -> E. x e. V ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) ) | 
						
							| 89 | 53 88 | mpd |  |-  ( ( ph /\ Q e. A ) -> E. x e. V ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) | 
						
							| 90 | 89 | ex |  |-  ( ph -> ( Q e. A -> E. x e. V ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) ) | 
						
							| 91 | 9 | ad2antrr |  |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 92 | 10 | ad2antrr |  |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> Q e. B ) | 
						
							| 93 | 1 3 8 | dihcnvid1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ Q e. B ) -> ( `' I ` ( I ` Q ) ) = Q ) | 
						
							| 94 | 91 92 93 | syl2anc |  |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> ( `' I ` ( I ` Q ) ) = Q ) | 
						
							| 95 |  | fveq2 |  |-  ( ( I ` Q ) = ( N ` { x } ) -> ( `' I ` ( I ` Q ) ) = ( `' I ` ( N ` { x } ) ) ) | 
						
							| 96 | 95 | ad2antll |  |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> ( `' I ` ( I ` Q ) ) = ( `' I ` ( N ` { x } ) ) ) | 
						
							| 97 | 94 96 | eqtr3d |  |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> Q = ( `' I ` ( N ` { x } ) ) ) | 
						
							| 98 | 66 | ad2antrr |  |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> U e. LMod ) | 
						
							| 99 |  | simplr |  |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> x e. V ) | 
						
							| 100 |  | simprl |  |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> x =/= .0. ) | 
						
							| 101 |  | eqid |  |-  ( LSAtoms ` U ) = ( LSAtoms ` U ) | 
						
							| 102 | 5 7 6 101 | lsatlspsn2 |  |-  ( ( U e. LMod /\ x e. V /\ x =/= .0. ) -> ( N ` { x } ) e. ( LSAtoms ` U ) ) | 
						
							| 103 | 98 99 100 102 | syl3anc |  |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> ( N ` { x } ) e. ( LSAtoms ` U ) ) | 
						
							| 104 | 2 3 4 8 101 | dihlatat |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( N ` { x } ) e. ( LSAtoms ` U ) ) -> ( `' I ` ( N ` { x } ) ) e. A ) | 
						
							| 105 | 91 103 104 | syl2anc |  |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> ( `' I ` ( N ` { x } ) ) e. A ) | 
						
							| 106 | 97 105 | eqeltrd |  |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> Q e. A ) | 
						
							| 107 | 106 | ex |  |-  ( ( ph /\ x e. V ) -> ( ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) -> Q e. A ) ) | 
						
							| 108 | 107 | rexlimdva |  |-  ( ph -> ( E. x e. V ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) -> Q e. A ) ) | 
						
							| 109 | 90 108 | impbid |  |-  ( ph -> ( Q e. A <-> E. x e. V ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) ) | 
						
							| 110 |  | rexdifsn |  |-  ( E. x e. ( V \ { .0. } ) ( I ` Q ) = ( N ` { x } ) <-> E. x e. V ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) | 
						
							| 111 | 109 110 | bitr4di |  |-  ( ph -> ( Q e. A <-> E. x e. ( V \ { .0. } ) ( I ` Q ) = ( N ` { x } ) ) ) |