Metamath Proof Explorer


Theorem dihatexv

Description: There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 16-Aug-2014)

Ref Expression
Hypotheses dihatexv.b
|- B = ( Base ` K )
dihatexv.a
|- A = ( Atoms ` K )
dihatexv.h
|- H = ( LHyp ` K )
dihatexv.u
|- U = ( ( DVecH ` K ) ` W )
dihatexv.v
|- V = ( Base ` U )
dihatexv.o
|- .0. = ( 0g ` U )
dihatexv.n
|- N = ( LSpan ` U )
dihatexv.i
|- I = ( ( DIsoH ` K ) ` W )
dihatexv.k
|- ( ph -> ( K e. HL /\ W e. H ) )
dihatexv.q
|- ( ph -> Q e. B )
Assertion dihatexv
|- ( ph -> ( Q e. A <-> E. x e. ( V \ { .0. } ) ( I ` Q ) = ( N ` { x } ) ) )

Proof

Step Hyp Ref Expression
1 dihatexv.b
 |-  B = ( Base ` K )
2 dihatexv.a
 |-  A = ( Atoms ` K )
3 dihatexv.h
 |-  H = ( LHyp ` K )
4 dihatexv.u
 |-  U = ( ( DVecH ` K ) ` W )
5 dihatexv.v
 |-  V = ( Base ` U )
6 dihatexv.o
 |-  .0. = ( 0g ` U )
7 dihatexv.n
 |-  N = ( LSpan ` U )
8 dihatexv.i
 |-  I = ( ( DIsoH ` K ) ` W )
9 dihatexv.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 dihatexv.q
 |-  ( ph -> Q e. B )
11 9 ad2antrr
 |-  ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) -> ( K e. HL /\ W e. H ) )
12 simplr
 |-  ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) -> Q e. A )
13 simpr
 |-  ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) -> Q ( le ` K ) W )
14 eqid
 |-  ( le ` K ) = ( le ` K )
15 eqid
 |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W )
16 eqid
 |-  ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) )
17 1 14 2 3 15 16 4 8 7 dih1dimb2
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ Q ( le ` K ) W ) ) -> E. g e. ( ( LTrn ` K ) ` W ) ( g =/= ( _I |` B ) /\ ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) )
18 11 12 13 17 syl12anc
 |-  ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) -> E. g e. ( ( LTrn ` K ) ` W ) ( g =/= ( _I |` B ) /\ ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) )
19 9 ad3antrrr
 |-  ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> ( K e. HL /\ W e. H ) )
20 simpr
 |-  ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> g e. ( ( LTrn ` K ) ` W ) )
21 eqid
 |-  ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W )
22 1 3 15 21 16 tendo0cl
 |-  ( ( K e. HL /\ W e. H ) -> ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) e. ( ( TEndo ` K ) ` W ) )
23 19 22 syl
 |-  ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) e. ( ( TEndo ` K ) ` W ) )
24 3 15 21 4 5 dvhelvbasei
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( g e. ( ( LTrn ` K ) ` W ) /\ ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) e. ( ( TEndo ` K ) ` W ) ) ) -> <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. e. V )
25 19 20 23 24 syl12anc
 |-  ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. e. V )
26 sneq
 |-  ( x = <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. -> { x } = { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } )
27 26 fveq2d
 |-  ( x = <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. -> ( N ` { x } ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) )
28 27 rspceeqv
 |-  ( ( <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. e. V /\ ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) )
29 25 28 sylan
 |-  ( ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) /\ ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) )
30 29 ex
 |-  ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> ( ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) )
31 30 adantld
 |-  ( ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) /\ g e. ( ( LTrn ` K ) ` W ) ) -> ( ( g =/= ( _I |` B ) /\ ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) )
32 31 rexlimdva
 |-  ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) -> ( E. g e. ( ( LTrn ` K ) ` W ) ( g =/= ( _I |` B ) /\ ( I ` Q ) = ( N ` { <. g , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) >. } ) ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) ) )
33 18 32 mpd
 |-  ( ( ( ph /\ Q e. A ) /\ Q ( le ` K ) W ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) )
34 9 ad2antrr
 |-  ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> ( K e. HL /\ W e. H ) )
35 eqid
 |-  ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W )
36 14 2 3 35 lhpocnel2
 |-  ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) ( le ` K ) W ) )
37 34 36 syl
 |-  ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) ( le ` K ) W ) )
38 simplr
 |-  ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> Q e. A )
39 simpr
 |-  ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> -. Q ( le ` K ) W )
40 eqid
 |-  ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) = ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q )
41 14 2 3 15 40 ltrniotacl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) ( le ` K ) W ) /\ ( Q e. A /\ -. Q ( le ` K ) W ) ) -> ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) )
42 34 37 38 39 41 syl112anc
 |-  ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) )
43 3 15 21 tendoidcl
 |-  ( ( K e. HL /\ W e. H ) -> ( _I |` ( ( LTrn ` K ) ` W ) ) e. ( ( TEndo ` K ) ` W ) )
44 34 43 syl
 |-  ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> ( _I |` ( ( LTrn ` K ) ` W ) ) e. ( ( TEndo ` K ) ` W ) )
45 3 15 21 4 5 dvhelvbasei
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) /\ ( _I |` ( ( LTrn ` K ) ` W ) ) e. ( ( TEndo ` K ) ` W ) ) ) -> <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. e. V )
46 34 42 44 45 syl12anc
 |-  ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. e. V )
47 14 2 3 35 15 8 4 7 40 dih1dimc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q ( le ` K ) W ) ) -> ( I ` Q ) = ( N ` { <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) )
48 34 38 39 47 syl12anc
 |-  ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> ( I ` Q ) = ( N ` { <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) )
49 sneq
 |-  ( x = <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. -> { x } = { <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } )
50 49 fveq2d
 |-  ( x = <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. -> ( N ` { x } ) = ( N ` { <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) )
51 50 rspceeqv
 |-  ( ( <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. e. V /\ ( I ` Q ) = ( N ` { <. ( iota_ f e. ( ( LTrn ` K ) ` W ) ( f ` ( ( oc ` K ) ` W ) ) = Q ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. } ) ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) )
52 46 48 51 syl2anc
 |-  ( ( ( ph /\ Q e. A ) /\ -. Q ( le ` K ) W ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) )
53 33 52 pm2.61dan
 |-  ( ( ph /\ Q e. A ) -> E. x e. V ( I ` Q ) = ( N ` { x } ) )
54 9 simpld
 |-  ( ph -> K e. HL )
55 54 ad3antrrr
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> K e. HL )
56 hlatl
 |-  ( K e. HL -> K e. AtLat )
57 55 56 syl
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> K e. AtLat )
58 simpllr
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> Q e. A )
59 eqid
 |-  ( 0. ` K ) = ( 0. ` K )
60 59 2 atn0
 |-  ( ( K e. AtLat /\ Q e. A ) -> Q =/= ( 0. ` K ) )
61 57 58 60 syl2anc
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> Q =/= ( 0. ` K ) )
62 sneq
 |-  ( x = .0. -> { x } = { .0. } )
63 62 fveq2d
 |-  ( x = .0. -> ( N ` { x } ) = ( N ` { .0. } ) )
64 63 3ad2ant3
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( N ` { x } ) = ( N ` { .0. } ) )
65 simp1ll
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ph )
66 3 4 9 dvhlmod
 |-  ( ph -> U e. LMod )
67 6 7 lspsn0
 |-  ( U e. LMod -> ( N ` { .0. } ) = { .0. } )
68 65 66 67 3syl
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( N ` { .0. } ) = { .0. } )
69 64 68 eqtrd
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( N ` { x } ) = { .0. } )
70 simp2
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( I ` Q ) = ( N ` { x } ) )
71 59 3 8 4 6 dih0
 |-  ( ( K e. HL /\ W e. H ) -> ( I ` ( 0. ` K ) ) = { .0. } )
72 65 9 71 3syl
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( I ` ( 0. ` K ) ) = { .0. } )
73 69 70 72 3eqtr4d
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( I ` Q ) = ( I ` ( 0. ` K ) ) )
74 65 9 syl
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( K e. HL /\ W e. H ) )
75 65 10 syl
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> Q e. B )
76 65 54 syl
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> K e. HL )
77 hlop
 |-  ( K e. HL -> K e. OP )
78 1 59 op0cl
 |-  ( K e. OP -> ( 0. ` K ) e. B )
79 76 77 78 3syl
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( 0. ` K ) e. B )
80 1 3 8 dih11
 |-  ( ( ( K e. HL /\ W e. H ) /\ Q e. B /\ ( 0. ` K ) e. B ) -> ( ( I ` Q ) = ( I ` ( 0. ` K ) ) <-> Q = ( 0. ` K ) ) )
81 74 75 79 80 syl3anc
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> ( ( I ` Q ) = ( I ` ( 0. ` K ) ) <-> Q = ( 0. ` K ) ) )
82 73 81 mpbid
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) /\ x = .0. ) -> Q = ( 0. ` K ) )
83 82 3expia
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> ( x = .0. -> Q = ( 0. ` K ) ) )
84 83 necon3d
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> ( Q =/= ( 0. ` K ) -> x =/= .0. ) )
85 61 84 mpd
 |-  ( ( ( ( ph /\ Q e. A ) /\ x e. V ) /\ ( I ` Q ) = ( N ` { x } ) ) -> x =/= .0. )
86 85 ex
 |-  ( ( ( ph /\ Q e. A ) /\ x e. V ) -> ( ( I ` Q ) = ( N ` { x } ) -> x =/= .0. ) )
87 86 ancrd
 |-  ( ( ( ph /\ Q e. A ) /\ x e. V ) -> ( ( I ` Q ) = ( N ` { x } ) -> ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) )
88 87 reximdva
 |-  ( ( ph /\ Q e. A ) -> ( E. x e. V ( I ` Q ) = ( N ` { x } ) -> E. x e. V ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) )
89 53 88 mpd
 |-  ( ( ph /\ Q e. A ) -> E. x e. V ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) )
90 89 ex
 |-  ( ph -> ( Q e. A -> E. x e. V ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) )
91 9 ad2antrr
 |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> ( K e. HL /\ W e. H ) )
92 10 ad2antrr
 |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> Q e. B )
93 1 3 8 dihcnvid1
 |-  ( ( ( K e. HL /\ W e. H ) /\ Q e. B ) -> ( `' I ` ( I ` Q ) ) = Q )
94 91 92 93 syl2anc
 |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> ( `' I ` ( I ` Q ) ) = Q )
95 fveq2
 |-  ( ( I ` Q ) = ( N ` { x } ) -> ( `' I ` ( I ` Q ) ) = ( `' I ` ( N ` { x } ) ) )
96 95 ad2antll
 |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> ( `' I ` ( I ` Q ) ) = ( `' I ` ( N ` { x } ) ) )
97 94 96 eqtr3d
 |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> Q = ( `' I ` ( N ` { x } ) ) )
98 66 ad2antrr
 |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> U e. LMod )
99 simplr
 |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> x e. V )
100 simprl
 |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> x =/= .0. )
101 eqid
 |-  ( LSAtoms ` U ) = ( LSAtoms ` U )
102 5 7 6 101 lsatlspsn2
 |-  ( ( U e. LMod /\ x e. V /\ x =/= .0. ) -> ( N ` { x } ) e. ( LSAtoms ` U ) )
103 98 99 100 102 syl3anc
 |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> ( N ` { x } ) e. ( LSAtoms ` U ) )
104 2 3 4 8 101 dihlatat
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( N ` { x } ) e. ( LSAtoms ` U ) ) -> ( `' I ` ( N ` { x } ) ) e. A )
105 91 103 104 syl2anc
 |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> ( `' I ` ( N ` { x } ) ) e. A )
106 97 105 eqeltrd
 |-  ( ( ( ph /\ x e. V ) /\ ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) -> Q e. A )
107 106 ex
 |-  ( ( ph /\ x e. V ) -> ( ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) -> Q e. A ) )
108 107 rexlimdva
 |-  ( ph -> ( E. x e. V ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) -> Q e. A ) )
109 90 108 impbid
 |-  ( ph -> ( Q e. A <-> E. x e. V ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) ) )
110 rexdifsn
 |-  ( E. x e. ( V \ { .0. } ) ( I ` Q ) = ( N ` { x } ) <-> E. x e. V ( x =/= .0. /\ ( I ` Q ) = ( N ` { x } ) ) )
111 109 110 bitr4di
 |-  ( ph -> ( Q e. A <-> E. x e. ( V \ { .0. } ) ( I ` Q ) = ( N ` { x } ) ) )