Description: Span of the singleton of the zero vector. ( spansn0 analog.) (Contributed by NM, 15-Jan-2014) (Proof shortened by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspsn0.z | |- .0. = ( 0g ` W ) |
|
lspsn0.n | |- N = ( LSpan ` W ) |
||
Assertion | lspsn0 | |- ( W e. LMod -> ( N ` { .0. } ) = { .0. } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsn0.z | |- .0. = ( 0g ` W ) |
|
2 | lspsn0.n | |- N = ( LSpan ` W ) |
|
3 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
4 | 1 3 | lsssn0 | |- ( W e. LMod -> { .0. } e. ( LSubSp ` W ) ) |
5 | 3 2 | lspid | |- ( ( W e. LMod /\ { .0. } e. ( LSubSp ` W ) ) -> ( N ` { .0. } ) = { .0. } ) |
6 | 4 5 | mpdan | |- ( W e. LMod -> ( N ` { .0. } ) = { .0. } ) |