Description: Span of the singleton of the zero vector. ( spansn0 analog.) (Contributed by NM, 15-Jan-2014) (Proof shortened by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspsn0.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
lspsn0.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
Assertion | lspsn0 | ⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsn0.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
2 | lspsn0.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
3 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
4 | 1 3 | lsssn0 | ⊢ ( 𝑊 ∈ LMod → { 0 } ∈ ( LSubSp ‘ 𝑊 ) ) |
5 | 3 2 | lspid | ⊢ ( ( 𝑊 ∈ LMod ∧ { 0 } ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
6 | 4 5 | mpdan | ⊢ ( 𝑊 ∈ LMod → ( 𝑁 ‘ { 0 } ) = { 0 } ) |