Step |
Hyp |
Ref |
Expression |
1 |
|
dihatexv.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihatexv.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
dihatexv.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dihatexv.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dihatexv.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
6 |
|
dihatexv.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
7 |
|
dihatexv.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
8 |
|
dihatexv.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
dihatexv.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
dihatexv.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐵 ) |
11 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → 𝑄 ∈ 𝐴 ) |
13 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → 𝑄 ( le ‘ 𝐾 ) 𝑊 ) |
14 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
15 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
|
eqid |
⊢ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) |
17 |
1 14 2 3 15 16 4 8 7
|
dih1dimb2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ∃ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ≠ ( I ↾ 𝐵 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) 〉 } ) ) ) |
18 |
11 12 13 17
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ∃ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ≠ ( I ↾ 𝐵 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) 〉 } ) ) ) |
19 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
20 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
21 |
|
eqid |
⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
22 |
1 3 15 21 16
|
tendo0cl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
23 |
19 22
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
24 |
3 15 21 4 5
|
dvhelvbasei |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) 〉 ∈ 𝑉 ) |
25 |
19 20 23 24
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) 〉 ∈ 𝑉 ) |
26 |
|
sneq |
⊢ ( 𝑥 = 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) 〉 → { 𝑥 } = { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) 〉 } ) |
27 |
26
|
fveq2d |
⊢ ( 𝑥 = 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) 〉 → ( 𝑁 ‘ { 𝑥 } ) = ( 𝑁 ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) 〉 } ) ) |
28 |
27
|
rspceeqv |
⊢ ( ( 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) 〉 ∈ 𝑉 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) 〉 } ) ) → ∃ 𝑥 ∈ 𝑉 ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) |
29 |
25 28
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) 〉 } ) ) → ∃ 𝑥 ∈ 𝑉 ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) |
30 |
29
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) 〉 } ) → ∃ 𝑥 ∈ 𝑉 ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) |
31 |
30
|
adantld |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ∧ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( 𝑔 ≠ ( I ↾ 𝐵 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) 〉 } ) ) → ∃ 𝑥 ∈ 𝑉 ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) |
32 |
31
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( ∃ 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ≠ ( I ↾ 𝐵 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 〈 𝑔 , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) 〉 } ) ) → ∃ 𝑥 ∈ 𝑉 ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) |
33 |
18 32
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ∃ 𝑥 ∈ 𝑉 ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) |
34 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
35 |
|
eqid |
⊢ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
36 |
14 2 3 35
|
lhpocnel2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) ) |
37 |
34 36
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) ) |
38 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → 𝑄 ∈ 𝐴 ) |
39 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) |
40 |
|
eqid |
⊢ ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) = ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) |
41 |
14 2 3 15 40
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
42 |
34 37 38 39 41
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
43 |
3 15 21
|
tendoidcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
44 |
34 43
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
45 |
3 15 21 4 5
|
dvhelvbasei |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ∈ 𝑉 ) |
46 |
34 42 44 45
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ∈ 𝑉 ) |
47 |
14 2 3 35 15 8 4 7 40
|
dih1dimc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } ) ) |
48 |
34 38 39 47
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } ) ) |
49 |
|
sneq |
⊢ ( 𝑥 = 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 → { 𝑥 } = { 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } ) |
50 |
49
|
fveq2d |
⊢ ( 𝑥 = 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 → ( 𝑁 ‘ { 𝑥 } ) = ( 𝑁 ‘ { 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } ) ) |
51 |
50
|
rspceeqv |
⊢ ( ( 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ∈ 𝑉 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 〈 ( ℩ 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑓 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 } ) ) → ∃ 𝑥 ∈ 𝑉 ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) |
52 |
46 48 51
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑊 ) → ∃ 𝑥 ∈ 𝑉 ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) |
53 |
33 52
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝑉 ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) |
54 |
9
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
55 |
54
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) → 𝐾 ∈ HL ) |
56 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
57 |
55 56
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) → 𝐾 ∈ AtLat ) |
58 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) → 𝑄 ∈ 𝐴 ) |
59 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
60 |
59 2
|
atn0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ≠ ( 0. ‘ 𝐾 ) ) |
61 |
57 58 60
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) → 𝑄 ≠ ( 0. ‘ 𝐾 ) ) |
62 |
|
sneq |
⊢ ( 𝑥 = 0 → { 𝑥 } = { 0 } ) |
63 |
62
|
fveq2d |
⊢ ( 𝑥 = 0 → ( 𝑁 ‘ { 𝑥 } ) = ( 𝑁 ‘ { 0 } ) ) |
64 |
63
|
3ad2ant3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ∧ 𝑥 = 0 ) → ( 𝑁 ‘ { 𝑥 } ) = ( 𝑁 ‘ { 0 } ) ) |
65 |
|
simp1ll |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ∧ 𝑥 = 0 ) → 𝜑 ) |
66 |
3 4 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
67 |
6 7
|
lspsn0 |
⊢ ( 𝑈 ∈ LMod → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
68 |
65 66 67
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ∧ 𝑥 = 0 ) → ( 𝑁 ‘ { 0 } ) = { 0 } ) |
69 |
64 68
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ∧ 𝑥 = 0 ) → ( 𝑁 ‘ { 𝑥 } ) = { 0 } ) |
70 |
|
simp2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ∧ 𝑥 = 0 ) → ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) |
71 |
59 3 8 4 6
|
dih0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) = { 0 } ) |
72 |
65 9 71
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ∧ 𝑥 = 0 ) → ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) = { 0 } ) |
73 |
69 70 72
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ∧ 𝑥 = 0 ) → ( 𝐼 ‘ 𝑄 ) = ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) ) |
74 |
65 9
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ∧ 𝑥 = 0 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
75 |
65 10
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ∧ 𝑥 = 0 ) → 𝑄 ∈ 𝐵 ) |
76 |
65 54
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ∧ 𝑥 = 0 ) → 𝐾 ∈ HL ) |
77 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
78 |
1 59
|
op0cl |
⊢ ( 𝐾 ∈ OP → ( 0. ‘ 𝐾 ) ∈ 𝐵 ) |
79 |
76 77 78
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ∧ 𝑥 = 0 ) → ( 0. ‘ 𝐾 ) ∈ 𝐵 ) |
80 |
1 3 8
|
dih11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐵 ∧ ( 0. ‘ 𝐾 ) ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑄 ) = ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) ↔ 𝑄 = ( 0. ‘ 𝐾 ) ) ) |
81 |
74 75 79 80
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ∧ 𝑥 = 0 ) → ( ( 𝐼 ‘ 𝑄 ) = ( 𝐼 ‘ ( 0. ‘ 𝐾 ) ) ↔ 𝑄 = ( 0. ‘ 𝐾 ) ) ) |
82 |
73 81
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ∧ 𝑥 = 0 ) → 𝑄 = ( 0. ‘ 𝐾 ) ) |
83 |
82
|
3expia |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) → ( 𝑥 = 0 → 𝑄 = ( 0. ‘ 𝐾 ) ) ) |
84 |
83
|
necon3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) → ( 𝑄 ≠ ( 0. ‘ 𝐾 ) → 𝑥 ≠ 0 ) ) |
85 |
61 84
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) → 𝑥 ≠ 0 ) |
86 |
85
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) → 𝑥 ≠ 0 ) ) |
87 |
86
|
ancrd |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) → ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) ) |
88 |
87
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ 𝑉 ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) → ∃ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) ) |
89 |
53 88
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) |
90 |
89
|
ex |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐴 → ∃ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) ) |
91 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
92 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) → 𝑄 ∈ 𝐵 ) |
93 |
1 3 8
|
dihcnvid1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐵 ) → ( ◡ 𝐼 ‘ ( 𝐼 ‘ 𝑄 ) ) = 𝑄 ) |
94 |
91 92 93
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) → ( ◡ 𝐼 ‘ ( 𝐼 ‘ 𝑄 ) ) = 𝑄 ) |
95 |
|
fveq2 |
⊢ ( ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) → ( ◡ 𝐼 ‘ ( 𝐼 ‘ 𝑄 ) ) = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) |
96 |
95
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) → ( ◡ 𝐼 ‘ ( 𝐼 ‘ 𝑄 ) ) = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) |
97 |
94 96
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) → 𝑄 = ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ) |
98 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) → 𝑈 ∈ LMod ) |
99 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) → 𝑥 ∈ 𝑉 ) |
100 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) → 𝑥 ≠ 0 ) |
101 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
102 |
5 7 6 101
|
lsatlspsn2 |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) → ( 𝑁 ‘ { 𝑥 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
103 |
98 99 100 102
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) → ( 𝑁 ‘ { 𝑥 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
104 |
2 3 4 8 101
|
dihlatat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑥 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ∈ 𝐴 ) |
105 |
91 103 104
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) → ( ◡ 𝐼 ‘ ( 𝑁 ‘ { 𝑥 } ) ) ∈ 𝐴 ) |
106 |
97 105
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) → 𝑄 ∈ 𝐴 ) |
107 |
106
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) → 𝑄 ∈ 𝐴 ) ) |
108 |
107
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) → 𝑄 ∈ 𝐴 ) ) |
109 |
90 108
|
impbid |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) ) |
110 |
|
rexdifsn |
⊢ ( ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 ∧ ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) |
111 |
109 110
|
bitr4di |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐴 ↔ ∃ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 𝑥 } ) ) ) |