Metamath Proof Explorer


Theorem lsatlspsn2

Description: The span of a nonzero singleton is an atom. TODO: make this obsolete and use lsatlspsn instead? (Contributed by NM, 9-Apr-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses lsatset.v 𝑉 = ( Base ‘ 𝑊 )
lsatset.n 𝑁 = ( LSpan ‘ 𝑊 )
lsatset.z 0 = ( 0g𝑊 )
lsatset.a 𝐴 = ( LSAtoms ‘ 𝑊 )
Assertion lsatlspsn2 ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 lsatset.v 𝑉 = ( Base ‘ 𝑊 )
2 lsatset.n 𝑁 = ( LSpan ‘ 𝑊 )
3 lsatset.z 0 = ( 0g𝑊 )
4 lsatset.a 𝐴 = ( LSAtoms ‘ 𝑊 )
5 3simpc ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → ( 𝑋𝑉𝑋0 ) )
6 eldifsn ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑋𝑉𝑋0 ) )
7 5 6 sylibr ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
8 eqid ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑋 } )
9 sneq ( 𝑣 = 𝑋 → { 𝑣 } = { 𝑋 } )
10 9 fveq2d ( 𝑣 = 𝑋 → ( 𝑁 ‘ { 𝑣 } ) = ( 𝑁 ‘ { 𝑋 } ) )
11 10 rspceeqv ( ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑋 } ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑣 } ) )
12 7 8 11 sylancl ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑣 } ) )
13 1 2 3 4 islsat ( 𝑊 ∈ LMod → ( ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑣 } ) ) )
14 13 3ad2ant1 ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → ( ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑣 } ) ) )
15 12 14 mpbird ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 )