| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsatset.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lsatset.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 3 |
|
lsatset.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 4 |
|
lsatset.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
| 5 |
|
3simpc |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) |
| 6 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) ) |
| 7 |
5 6
|
sylibr |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 8 |
|
eqid |
⊢ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑋 } ) |
| 9 |
|
sneq |
⊢ ( 𝑣 = 𝑋 → { 𝑣 } = { 𝑋 } ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝑣 = 𝑋 → ( 𝑁 ‘ { 𝑣 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 11 |
10
|
rspceeqv |
⊢ ( ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑋 } ) ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑣 } ) ) |
| 12 |
7 8 11
|
sylancl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑣 } ) ) |
| 13 |
1 2 3 4
|
islsat |
⊢ ( 𝑊 ∈ LMod → ( ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑣 } ) ) ) |
| 14 |
13
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ↔ ∃ 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑣 } ) ) ) |
| 15 |
12 14
|
mpbird |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝐴 ) |