| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsatset.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lsatset.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 3 |  | lsatset.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 4 |  | lsatset.a | ⊢ 𝐴  =  ( LSAtoms ‘ 𝑊 ) | 
						
							| 5 | 1 2 3 4 | lsatset | ⊢ ( 𝑊  ∈  𝑋  →  𝐴  =  ran  ( 𝑥  ∈  ( 𝑉  ∖  {  0  } )  ↦  ( 𝑁 ‘ { 𝑥 } ) ) ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( 𝑊  ∈  𝑋  →  ( 𝑈  ∈  𝐴  ↔  𝑈  ∈  ran  ( 𝑥  ∈  ( 𝑉  ∖  {  0  } )  ↦  ( 𝑁 ‘ { 𝑥 } ) ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝑉  ∖  {  0  } )  ↦  ( 𝑁 ‘ { 𝑥 } ) )  =  ( 𝑥  ∈  ( 𝑉  ∖  {  0  } )  ↦  ( 𝑁 ‘ { 𝑥 } ) ) | 
						
							| 8 |  | fvex | ⊢ ( 𝑁 ‘ { 𝑥 } )  ∈  V | 
						
							| 9 | 7 8 | elrnmpti | ⊢ ( 𝑈  ∈  ran  ( 𝑥  ∈  ( 𝑉  ∖  {  0  } )  ↦  ( 𝑁 ‘ { 𝑥 } ) )  ↔  ∃ 𝑥  ∈  ( 𝑉  ∖  {  0  } ) 𝑈  =  ( 𝑁 ‘ { 𝑥 } ) ) | 
						
							| 10 | 6 9 | bitrdi | ⊢ ( 𝑊  ∈  𝑋  →  ( 𝑈  ∈  𝐴  ↔  ∃ 𝑥  ∈  ( 𝑉  ∖  {  0  } ) 𝑈  =  ( 𝑁 ‘ { 𝑥 } ) ) ) |