Step |
Hyp |
Ref |
Expression |
1 |
|
lsatset.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lsatset.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
lsatset.z |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
lsatset.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑊 ) |
5 |
|
elex |
⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) |
6 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
7 |
6 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑉 ) |
8 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( 0g ‘ 𝑤 ) = ( 0g ‘ 𝑊 ) ) |
9 |
8 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( 0g ‘ 𝑤 ) = 0 ) |
10 |
9
|
sneqd |
⊢ ( 𝑤 = 𝑊 → { ( 0g ‘ 𝑤 ) } = { 0 } ) |
11 |
7 10
|
difeq12d |
⊢ ( 𝑤 = 𝑊 → ( ( Base ‘ 𝑤 ) ∖ { ( 0g ‘ 𝑤 ) } ) = ( 𝑉 ∖ { 0 } ) ) |
12 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( LSpan ‘ 𝑤 ) = ( LSpan ‘ 𝑊 ) ) |
13 |
12 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( LSpan ‘ 𝑤 ) = 𝑁 ) |
14 |
13
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) = ( 𝑁 ‘ { 𝑣 } ) ) |
15 |
11 14
|
mpteq12dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑣 ∈ ( ( Base ‘ 𝑤 ) ∖ { ( 0g ‘ 𝑤 ) } ) ↦ ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) ) = ( 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑁 ‘ { 𝑣 } ) ) ) |
16 |
15
|
rneqd |
⊢ ( 𝑤 = 𝑊 → ran ( 𝑣 ∈ ( ( Base ‘ 𝑤 ) ∖ { ( 0g ‘ 𝑤 ) } ) ↦ ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) ) = ran ( 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑁 ‘ { 𝑣 } ) ) ) |
17 |
|
df-lsatoms |
⊢ LSAtoms = ( 𝑤 ∈ V ↦ ran ( 𝑣 ∈ ( ( Base ‘ 𝑤 ) ∖ { ( 0g ‘ 𝑤 ) } ) ↦ ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) ) ) |
18 |
2
|
fvexi |
⊢ 𝑁 ∈ V |
19 |
18
|
rnex |
⊢ ran 𝑁 ∈ V |
20 |
|
p0ex |
⊢ { ∅ } ∈ V |
21 |
19 20
|
unex |
⊢ ( ran 𝑁 ∪ { ∅ } ) ∈ V |
22 |
|
eqid |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑁 ‘ { 𝑣 } ) ) |
23 |
|
fvrn0 |
⊢ ( 𝑁 ‘ { 𝑣 } ) ∈ ( ran 𝑁 ∪ { ∅ } ) |
24 |
23
|
a1i |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 0 } ) → ( 𝑁 ‘ { 𝑣 } ) ∈ ( ran 𝑁 ∪ { ∅ } ) ) |
25 |
22 24
|
fmpti |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑁 ‘ { 𝑣 } ) ) : ( 𝑉 ∖ { 0 } ) ⟶ ( ran 𝑁 ∪ { ∅ } ) |
26 |
|
frn |
⊢ ( ( 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑁 ‘ { 𝑣 } ) ) : ( 𝑉 ∖ { 0 } ) ⟶ ( ran 𝑁 ∪ { ∅ } ) → ran ( 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑁 ‘ { 𝑣 } ) ) ⊆ ( ran 𝑁 ∪ { ∅ } ) ) |
27 |
25 26
|
ax-mp |
⊢ ran ( 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑁 ‘ { 𝑣 } ) ) ⊆ ( ran 𝑁 ∪ { ∅ } ) |
28 |
21 27
|
ssexi |
⊢ ran ( 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑁 ‘ { 𝑣 } ) ) ∈ V |
29 |
16 17 28
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( LSAtoms ‘ 𝑊 ) = ran ( 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑁 ‘ { 𝑣 } ) ) ) |
30 |
5 29
|
syl |
⊢ ( 𝑊 ∈ 𝑋 → ( LSAtoms ‘ 𝑊 ) = ran ( 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑁 ‘ { 𝑣 } ) ) ) |
31 |
4 30
|
syl5eq |
⊢ ( 𝑊 ∈ 𝑋 → 𝐴 = ran ( 𝑣 ∈ ( 𝑉 ∖ { 0 } ) ↦ ( 𝑁 ‘ { 𝑣 } ) ) ) |