Metamath Proof Explorer
Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005) (Revised by Mario Carneiro, 1-Sep-2015)
|
|
Ref |
Expression |
|
Hypotheses |
fmpt.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
|
|
fmpti.2 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) |
|
Assertion |
fmpti |
⊢ 𝐹 : 𝐴 ⟶ 𝐵 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fmpt.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
2 |
|
fmpti.2 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) |
3 |
2
|
rgen |
⊢ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
4 |
1
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) |
5 |
3 4
|
mpbi |
⊢ 𝐹 : 𝐴 ⟶ 𝐵 |