Metamath Proof Explorer


Theorem fmpti

Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005) (Revised by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses fmpt.1 𝐹 = ( 𝑥𝐴𝐶 )
fmpti.2 ( 𝑥𝐴𝐶𝐵 )
Assertion fmpti 𝐹 : 𝐴𝐵

Proof

Step Hyp Ref Expression
1 fmpt.1 𝐹 = ( 𝑥𝐴𝐶 )
2 fmpti.2 ( 𝑥𝐴𝐶𝐵 )
3 2 rgen 𝑥𝐴 𝐶𝐵
4 1 fmpt ( ∀ 𝑥𝐴 𝐶𝐵𝐹 : 𝐴𝐵 )
5 3 4 mpbi 𝐹 : 𝐴𝐵