Step |
Hyp |
Ref |
Expression |
0 |
|
clsa |
⊢ LSAtoms |
1 |
|
vw |
⊢ 𝑤 |
2 |
|
cvv |
⊢ V |
3 |
|
vv |
⊢ 𝑣 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑤 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
7 |
|
c0g |
⊢ 0g |
8 |
5 7
|
cfv |
⊢ ( 0g ‘ 𝑤 ) |
9 |
8
|
csn |
⊢ { ( 0g ‘ 𝑤 ) } |
10 |
6 9
|
cdif |
⊢ ( ( Base ‘ 𝑤 ) ∖ { ( 0g ‘ 𝑤 ) } ) |
11 |
|
clspn |
⊢ LSpan |
12 |
5 11
|
cfv |
⊢ ( LSpan ‘ 𝑤 ) |
13 |
3
|
cv |
⊢ 𝑣 |
14 |
13
|
csn |
⊢ { 𝑣 } |
15 |
14 12
|
cfv |
⊢ ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) |
16 |
3 10 15
|
cmpt |
⊢ ( 𝑣 ∈ ( ( Base ‘ 𝑤 ) ∖ { ( 0g ‘ 𝑤 ) } ) ↦ ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) ) |
17 |
16
|
crn |
⊢ ran ( 𝑣 ∈ ( ( Base ‘ 𝑤 ) ∖ { ( 0g ‘ 𝑤 ) } ) ↦ ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) ) |
18 |
1 2 17
|
cmpt |
⊢ ( 𝑤 ∈ V ↦ ran ( 𝑣 ∈ ( ( Base ‘ 𝑤 ) ∖ { ( 0g ‘ 𝑤 ) } ) ↦ ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) ) ) |
19 |
0 18
|
wceq |
⊢ LSAtoms = ( 𝑤 ∈ V ↦ ran ( 𝑣 ∈ ( ( Base ‘ 𝑤 ) ∖ { ( 0g ‘ 𝑤 ) } ) ↦ ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) ) ) |