Metamath Proof Explorer


Definition df-lsatoms

Description: Define the set of all 1-dim subspaces (atoms) of a left module or left vector space. (Contributed by NM, 9-Apr-2014)

Ref Expression
Assertion df-lsatoms LSAtoms = ( 𝑤 ∈ V ↦ ran ( 𝑣 ∈ ( ( Base ‘ 𝑤 ) ∖ { ( 0g𝑤 ) } ) ↦ ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clsa LSAtoms
1 vw 𝑤
2 cvv V
3 vv 𝑣
4 cbs Base
5 1 cv 𝑤
6 5 4 cfv ( Base ‘ 𝑤 )
7 c0g 0g
8 5 7 cfv ( 0g𝑤 )
9 8 csn { ( 0g𝑤 ) }
10 6 9 cdif ( ( Base ‘ 𝑤 ) ∖ { ( 0g𝑤 ) } )
11 clspn LSpan
12 5 11 cfv ( LSpan ‘ 𝑤 )
13 3 cv 𝑣
14 13 csn { 𝑣 }
15 14 12 cfv ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } )
16 3 10 15 cmpt ( 𝑣 ∈ ( ( Base ‘ 𝑤 ) ∖ { ( 0g𝑤 ) } ) ↦ ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) )
17 16 crn ran ( 𝑣 ∈ ( ( Base ‘ 𝑤 ) ∖ { ( 0g𝑤 ) } ) ↦ ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) )
18 1 2 17 cmpt ( 𝑤 ∈ V ↦ ran ( 𝑣 ∈ ( ( Base ‘ 𝑤 ) ∖ { ( 0g𝑤 ) } ) ↦ ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) ) )
19 0 18 wceq LSAtoms = ( 𝑤 ∈ V ↦ ran ( 𝑣 ∈ ( ( Base ‘ 𝑤 ) ∖ { ( 0g𝑤 ) } ) ↦ ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) ) )