| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clsa |
⊢ LSAtoms |
| 1 |
|
vw |
⊢ 𝑤 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vv |
⊢ 𝑣 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑤 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
| 7 |
|
c0g |
⊢ 0g |
| 8 |
5 7
|
cfv |
⊢ ( 0g ‘ 𝑤 ) |
| 9 |
8
|
csn |
⊢ { ( 0g ‘ 𝑤 ) } |
| 10 |
6 9
|
cdif |
⊢ ( ( Base ‘ 𝑤 ) ∖ { ( 0g ‘ 𝑤 ) } ) |
| 11 |
|
clspn |
⊢ LSpan |
| 12 |
5 11
|
cfv |
⊢ ( LSpan ‘ 𝑤 ) |
| 13 |
3
|
cv |
⊢ 𝑣 |
| 14 |
13
|
csn |
⊢ { 𝑣 } |
| 15 |
14 12
|
cfv |
⊢ ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) |
| 16 |
3 10 15
|
cmpt |
⊢ ( 𝑣 ∈ ( ( Base ‘ 𝑤 ) ∖ { ( 0g ‘ 𝑤 ) } ) ↦ ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) ) |
| 17 |
16
|
crn |
⊢ ran ( 𝑣 ∈ ( ( Base ‘ 𝑤 ) ∖ { ( 0g ‘ 𝑤 ) } ) ↦ ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) ) |
| 18 |
1 2 17
|
cmpt |
⊢ ( 𝑤 ∈ V ↦ ran ( 𝑣 ∈ ( ( Base ‘ 𝑤 ) ∖ { ( 0g ‘ 𝑤 ) } ) ↦ ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) ) ) |
| 19 |
0 18
|
wceq |
⊢ LSAtoms = ( 𝑤 ∈ V ↦ ran ( 𝑣 ∈ ( ( Base ‘ 𝑤 ) ∖ { ( 0g ‘ 𝑤 ) } ) ↦ ( ( LSpan ‘ 𝑤 ) ‘ { 𝑣 } ) ) ) |