| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clsh |
⊢ LSHyp |
| 1 |
|
vw |
⊢ 𝑤 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vs |
⊢ 𝑠 |
| 4 |
|
clss |
⊢ LSubSp |
| 5 |
1
|
cv |
⊢ 𝑤 |
| 6 |
5 4
|
cfv |
⊢ ( LSubSp ‘ 𝑤 ) |
| 7 |
3
|
cv |
⊢ 𝑠 |
| 8 |
|
cbs |
⊢ Base |
| 9 |
5 8
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
| 10 |
7 9
|
wne |
⊢ 𝑠 ≠ ( Base ‘ 𝑤 ) |
| 11 |
|
vv |
⊢ 𝑣 |
| 12 |
|
clspn |
⊢ LSpan |
| 13 |
5 12
|
cfv |
⊢ ( LSpan ‘ 𝑤 ) |
| 14 |
11
|
cv |
⊢ 𝑣 |
| 15 |
14
|
csn |
⊢ { 𝑣 } |
| 16 |
7 15
|
cun |
⊢ ( 𝑠 ∪ { 𝑣 } ) |
| 17 |
16 13
|
cfv |
⊢ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) |
| 18 |
17 9
|
wceq |
⊢ ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = ( Base ‘ 𝑤 ) |
| 19 |
18 11 9
|
wrex |
⊢ ∃ 𝑣 ∈ ( Base ‘ 𝑤 ) ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = ( Base ‘ 𝑤 ) |
| 20 |
10 19
|
wa |
⊢ ( 𝑠 ≠ ( Base ‘ 𝑤 ) ∧ ∃ 𝑣 ∈ ( Base ‘ 𝑤 ) ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = ( Base ‘ 𝑤 ) ) |
| 21 |
20 3 6
|
crab |
⊢ { 𝑠 ∈ ( LSubSp ‘ 𝑤 ) ∣ ( 𝑠 ≠ ( Base ‘ 𝑤 ) ∧ ∃ 𝑣 ∈ ( Base ‘ 𝑤 ) ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = ( Base ‘ 𝑤 ) ) } |
| 22 |
1 2 21
|
cmpt |
⊢ ( 𝑤 ∈ V ↦ { 𝑠 ∈ ( LSubSp ‘ 𝑤 ) ∣ ( 𝑠 ≠ ( Base ‘ 𝑤 ) ∧ ∃ 𝑣 ∈ ( Base ‘ 𝑤 ) ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = ( Base ‘ 𝑤 ) ) } ) |
| 23 |
0 22
|
wceq |
⊢ LSHyp = ( 𝑤 ∈ V ↦ { 𝑠 ∈ ( LSubSp ‘ 𝑤 ) ∣ ( 𝑠 ≠ ( Base ‘ 𝑤 ) ∧ ∃ 𝑣 ∈ ( Base ‘ 𝑤 ) ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = ( Base ‘ 𝑤 ) ) } ) |