Step |
Hyp |
Ref |
Expression |
1 |
|
lshpset.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lshpset.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
lshpset.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
4 |
|
lshpset.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
5 |
|
elex |
⊢ ( 𝑊 ∈ 𝑋 → 𝑊 ∈ V ) |
6 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( LSubSp ‘ 𝑤 ) = ( LSubSp ‘ 𝑊 ) ) |
7 |
6 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( LSubSp ‘ 𝑤 ) = 𝑆 ) |
8 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
9 |
8 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑉 ) |
10 |
9
|
neeq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑠 ≠ ( Base ‘ 𝑤 ) ↔ 𝑠 ≠ 𝑉 ) ) |
11 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( LSpan ‘ 𝑤 ) = ( LSpan ‘ 𝑊 ) ) |
12 |
11 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( LSpan ‘ 𝑤 ) = 𝑁 ) |
13 |
12
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = ( 𝑁 ‘ ( 𝑠 ∪ { 𝑣 } ) ) ) |
14 |
13 9
|
eqeq12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = ( Base ‘ 𝑤 ) ↔ ( 𝑁 ‘ ( 𝑠 ∪ { 𝑣 } ) ) = 𝑉 ) ) |
15 |
9 14
|
rexeqbidv |
⊢ ( 𝑤 = 𝑊 → ( ∃ 𝑣 ∈ ( Base ‘ 𝑤 ) ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = ( Base ‘ 𝑤 ) ↔ ∃ 𝑣 ∈ 𝑉 ( 𝑁 ‘ ( 𝑠 ∪ { 𝑣 } ) ) = 𝑉 ) ) |
16 |
10 15
|
anbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑠 ≠ ( Base ‘ 𝑤 ) ∧ ∃ 𝑣 ∈ ( Base ‘ 𝑤 ) ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = ( Base ‘ 𝑤 ) ) ↔ ( 𝑠 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( 𝑁 ‘ ( 𝑠 ∪ { 𝑣 } ) ) = 𝑉 ) ) ) |
17 |
7 16
|
rabeqbidv |
⊢ ( 𝑤 = 𝑊 → { 𝑠 ∈ ( LSubSp ‘ 𝑤 ) ∣ ( 𝑠 ≠ ( Base ‘ 𝑤 ) ∧ ∃ 𝑣 ∈ ( Base ‘ 𝑤 ) ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = ( Base ‘ 𝑤 ) ) } = { 𝑠 ∈ 𝑆 ∣ ( 𝑠 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( 𝑁 ‘ ( 𝑠 ∪ { 𝑣 } ) ) = 𝑉 ) } ) |
18 |
|
df-lshyp |
⊢ LSHyp = ( 𝑤 ∈ V ↦ { 𝑠 ∈ ( LSubSp ‘ 𝑤 ) ∣ ( 𝑠 ≠ ( Base ‘ 𝑤 ) ∧ ∃ 𝑣 ∈ ( Base ‘ 𝑤 ) ( ( LSpan ‘ 𝑤 ) ‘ ( 𝑠 ∪ { 𝑣 } ) ) = ( Base ‘ 𝑤 ) ) } ) |
19 |
3
|
fvexi |
⊢ 𝑆 ∈ V |
20 |
19
|
rabex |
⊢ { 𝑠 ∈ 𝑆 ∣ ( 𝑠 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( 𝑁 ‘ ( 𝑠 ∪ { 𝑣 } ) ) = 𝑉 ) } ∈ V |
21 |
17 18 20
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( LSHyp ‘ 𝑊 ) = { 𝑠 ∈ 𝑆 ∣ ( 𝑠 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( 𝑁 ‘ ( 𝑠 ∪ { 𝑣 } ) ) = 𝑉 ) } ) |
22 |
5 21
|
syl |
⊢ ( 𝑊 ∈ 𝑋 → ( LSHyp ‘ 𝑊 ) = { 𝑠 ∈ 𝑆 ∣ ( 𝑠 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( 𝑁 ‘ ( 𝑠 ∪ { 𝑣 } ) ) = 𝑉 ) } ) |
23 |
4 22
|
syl5eq |
⊢ ( 𝑊 ∈ 𝑋 → 𝐻 = { 𝑠 ∈ 𝑆 ∣ ( 𝑠 ≠ 𝑉 ∧ ∃ 𝑣 ∈ 𝑉 ( 𝑁 ‘ ( 𝑠 ∪ { 𝑣 } ) ) = 𝑉 ) } ) |