| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lshpset.v |
|- V = ( Base ` W ) |
| 2 |
|
lshpset.n |
|- N = ( LSpan ` W ) |
| 3 |
|
lshpset.s |
|- S = ( LSubSp ` W ) |
| 4 |
|
lshpset.h |
|- H = ( LSHyp ` W ) |
| 5 |
|
elex |
|- ( W e. X -> W e. _V ) |
| 6 |
|
fveq2 |
|- ( w = W -> ( LSubSp ` w ) = ( LSubSp ` W ) ) |
| 7 |
6 3
|
eqtr4di |
|- ( w = W -> ( LSubSp ` w ) = S ) |
| 8 |
|
fveq2 |
|- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
| 9 |
8 1
|
eqtr4di |
|- ( w = W -> ( Base ` w ) = V ) |
| 10 |
9
|
neeq2d |
|- ( w = W -> ( s =/= ( Base ` w ) <-> s =/= V ) ) |
| 11 |
|
fveq2 |
|- ( w = W -> ( LSpan ` w ) = ( LSpan ` W ) ) |
| 12 |
11 2
|
eqtr4di |
|- ( w = W -> ( LSpan ` w ) = N ) |
| 13 |
12
|
fveq1d |
|- ( w = W -> ( ( LSpan ` w ) ` ( s u. { v } ) ) = ( N ` ( s u. { v } ) ) ) |
| 14 |
13 9
|
eqeq12d |
|- ( w = W -> ( ( ( LSpan ` w ) ` ( s u. { v } ) ) = ( Base ` w ) <-> ( N ` ( s u. { v } ) ) = V ) ) |
| 15 |
9 14
|
rexeqbidv |
|- ( w = W -> ( E. v e. ( Base ` w ) ( ( LSpan ` w ) ` ( s u. { v } ) ) = ( Base ` w ) <-> E. v e. V ( N ` ( s u. { v } ) ) = V ) ) |
| 16 |
10 15
|
anbi12d |
|- ( w = W -> ( ( s =/= ( Base ` w ) /\ E. v e. ( Base ` w ) ( ( LSpan ` w ) ` ( s u. { v } ) ) = ( Base ` w ) ) <-> ( s =/= V /\ E. v e. V ( N ` ( s u. { v } ) ) = V ) ) ) |
| 17 |
7 16
|
rabeqbidv |
|- ( w = W -> { s e. ( LSubSp ` w ) | ( s =/= ( Base ` w ) /\ E. v e. ( Base ` w ) ( ( LSpan ` w ) ` ( s u. { v } ) ) = ( Base ` w ) ) } = { s e. S | ( s =/= V /\ E. v e. V ( N ` ( s u. { v } ) ) = V ) } ) |
| 18 |
|
df-lshyp |
|- LSHyp = ( w e. _V |-> { s e. ( LSubSp ` w ) | ( s =/= ( Base ` w ) /\ E. v e. ( Base ` w ) ( ( LSpan ` w ) ` ( s u. { v } ) ) = ( Base ` w ) ) } ) |
| 19 |
3
|
fvexi |
|- S e. _V |
| 20 |
19
|
rabex |
|- { s e. S | ( s =/= V /\ E. v e. V ( N ` ( s u. { v } ) ) = V ) } e. _V |
| 21 |
17 18 20
|
fvmpt |
|- ( W e. _V -> ( LSHyp ` W ) = { s e. S | ( s =/= V /\ E. v e. V ( N ` ( s u. { v } ) ) = V ) } ) |
| 22 |
5 21
|
syl |
|- ( W e. X -> ( LSHyp ` W ) = { s e. S | ( s =/= V /\ E. v e. V ( N ` ( s u. { v } ) ) = V ) } ) |
| 23 |
4 22
|
eqtrid |
|- ( W e. X -> H = { s e. S | ( s =/= V /\ E. v e. V ( N ` ( s u. { v } ) ) = V ) } ) |