Metamath Proof Explorer


Theorem islshp

Description: The predicate "is a hyperplane" (of a left module or left vector space). (Contributed by NM, 29-Jun-2014)

Ref Expression
Hypotheses lshpset.v
|- V = ( Base ` W )
lshpset.n
|- N = ( LSpan ` W )
lshpset.s
|- S = ( LSubSp ` W )
lshpset.h
|- H = ( LSHyp ` W )
Assertion islshp
|- ( W e. X -> ( U e. H <-> ( U e. S /\ U =/= V /\ E. v e. V ( N ` ( U u. { v } ) ) = V ) ) )

Proof

Step Hyp Ref Expression
1 lshpset.v
 |-  V = ( Base ` W )
2 lshpset.n
 |-  N = ( LSpan ` W )
3 lshpset.s
 |-  S = ( LSubSp ` W )
4 lshpset.h
 |-  H = ( LSHyp ` W )
5 1 2 3 4 lshpset
 |-  ( W e. X -> H = { s e. S | ( s =/= V /\ E. v e. V ( N ` ( s u. { v } ) ) = V ) } )
6 5 eleq2d
 |-  ( W e. X -> ( U e. H <-> U e. { s e. S | ( s =/= V /\ E. v e. V ( N ` ( s u. { v } ) ) = V ) } ) )
7 neeq1
 |-  ( s = U -> ( s =/= V <-> U =/= V ) )
8 uneq1
 |-  ( s = U -> ( s u. { v } ) = ( U u. { v } ) )
9 8 fveqeq2d
 |-  ( s = U -> ( ( N ` ( s u. { v } ) ) = V <-> ( N ` ( U u. { v } ) ) = V ) )
10 9 rexbidv
 |-  ( s = U -> ( E. v e. V ( N ` ( s u. { v } ) ) = V <-> E. v e. V ( N ` ( U u. { v } ) ) = V ) )
11 7 10 anbi12d
 |-  ( s = U -> ( ( s =/= V /\ E. v e. V ( N ` ( s u. { v } ) ) = V ) <-> ( U =/= V /\ E. v e. V ( N ` ( U u. { v } ) ) = V ) ) )
12 11 elrab
 |-  ( U e. { s e. S | ( s =/= V /\ E. v e. V ( N ` ( s u. { v } ) ) = V ) } <-> ( U e. S /\ ( U =/= V /\ E. v e. V ( N ` ( U u. { v } ) ) = V ) ) )
13 3anass
 |-  ( ( U e. S /\ U =/= V /\ E. v e. V ( N ` ( U u. { v } ) ) = V ) <-> ( U e. S /\ ( U =/= V /\ E. v e. V ( N ` ( U u. { v } ) ) = V ) ) )
14 12 13 bitr4i
 |-  ( U e. { s e. S | ( s =/= V /\ E. v e. V ( N ` ( s u. { v } ) ) = V ) } <-> ( U e. S /\ U =/= V /\ E. v e. V ( N ` ( U u. { v } ) ) = V ) )
15 6 14 bitrdi
 |-  ( W e. X -> ( U e. H <-> ( U e. S /\ U =/= V /\ E. v e. V ( N ` ( U u. { v } ) ) = V ) ) )