Metamath Proof Explorer


Theorem islshp

Description: The predicate "is a hyperplane" (of a left module or left vector space). (Contributed by NM, 29-Jun-2014)

Ref Expression
Hypotheses lshpset.v V=BaseW
lshpset.n N=LSpanW
lshpset.s S=LSubSpW
lshpset.h H=LSHypW
Assertion islshp WXUHUSUVvVNUv=V

Proof

Step Hyp Ref Expression
1 lshpset.v V=BaseW
2 lshpset.n N=LSpanW
3 lshpset.s S=LSubSpW
4 lshpset.h H=LSHypW
5 1 2 3 4 lshpset WXH=sS|sVvVNsv=V
6 5 eleq2d WXUHUsS|sVvVNsv=V
7 neeq1 s=UsVUV
8 uneq1 s=Usv=Uv
9 8 fveqeq2d s=UNsv=VNUv=V
10 9 rexbidv s=UvVNsv=VvVNUv=V
11 7 10 anbi12d s=UsVvVNsv=VUVvVNUv=V
12 11 elrab UsS|sVvVNsv=VUSUVvVNUv=V
13 3anass USUVvVNUv=VUSUVvVNUv=V
14 12 13 bitr4i UsS|sVvVNsv=VUSUVvVNUv=V
15 6 14 bitrdi WXUHUSUVvVNUv=V