Description: The predicate "is a hyperplane" (of a left module or left vector space). (Contributed by NM, 29-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lshpset.v | |
|
lshpset.n | |
||
lshpset.s | |
||
lshpset.h | |
||
Assertion | islshp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpset.v | |
|
2 | lshpset.n | |
|
3 | lshpset.s | |
|
4 | lshpset.h | |
|
5 | 1 2 3 4 | lshpset | |
6 | 5 | eleq2d | |
7 | neeq1 | |
|
8 | uneq1 | |
|
9 | 8 | fveqeq2d | |
10 | 9 | rexbidv | |
11 | 7 10 | anbi12d | |
12 | 11 | elrab | |
13 | 3anass | |
|
14 | 12 13 | bitr4i | |
15 | 6 14 | bitrdi | |