Metamath Proof Explorer


Definition df-lshyp

Description: Define the set of all hyperplanes of a left module or left vector space. Also called co-atoms, these are subspaces that are one dimension less than the full space. (Contributed by NM, 29-Jun-2014)

Ref Expression
Assertion df-lshyp LSHyp=wVsLSubSpw|sBasewvBasewLSpanwsv=Basew

Detailed syntax breakdown

Step Hyp Ref Expression
0 clsh classLSHyp
1 vw setvarw
2 cvv classV
3 vs setvars
4 clss classLSubSp
5 1 cv setvarw
6 5 4 cfv classLSubSpw
7 3 cv setvars
8 cbs classBase
9 5 8 cfv classBasew
10 7 9 wne wffsBasew
11 vv setvarv
12 clspn classLSpan
13 5 12 cfv classLSpanw
14 11 cv setvarv
15 14 csn classv
16 7 15 cun classsv
17 16 13 cfv classLSpanwsv
18 17 9 wceq wffLSpanwsv=Basew
19 18 11 9 wrex wffvBasewLSpanwsv=Basew
20 10 19 wa wffsBasewvBasewLSpanwsv=Basew
21 20 3 6 crab classsLSubSpw|sBasewvBasewLSpanwsv=Basew
22 1 2 21 cmpt classwVsLSubSpw|sBasewvBasewLSpanwsv=Basew
23 0 22 wceq wffLSHyp=wVsLSubSpw|sBasewvBasewLSpanwsv=Basew