Metamath Proof Explorer


Definition df-lsatoms

Description: Define the set of all 1-dim subspaces (atoms) of a left module or left vector space. (Contributed by NM, 9-Apr-2014)

Ref Expression
Assertion df-lsatoms
|- LSAtoms = ( w e. _V |-> ran ( v e. ( ( Base ` w ) \ { ( 0g ` w ) } ) |-> ( ( LSpan ` w ) ` { v } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clsa
 |-  LSAtoms
1 vw
 |-  w
2 cvv
 |-  _V
3 vv
 |-  v
4 cbs
 |-  Base
5 1 cv
 |-  w
6 5 4 cfv
 |-  ( Base ` w )
7 c0g
 |-  0g
8 5 7 cfv
 |-  ( 0g ` w )
9 8 csn
 |-  { ( 0g ` w ) }
10 6 9 cdif
 |-  ( ( Base ` w ) \ { ( 0g ` w ) } )
11 clspn
 |-  LSpan
12 5 11 cfv
 |-  ( LSpan ` w )
13 3 cv
 |-  v
14 13 csn
 |-  { v }
15 14 12 cfv
 |-  ( ( LSpan ` w ) ` { v } )
16 3 10 15 cmpt
 |-  ( v e. ( ( Base ` w ) \ { ( 0g ` w ) } ) |-> ( ( LSpan ` w ) ` { v } ) )
17 16 crn
 |-  ran ( v e. ( ( Base ` w ) \ { ( 0g ` w ) } ) |-> ( ( LSpan ` w ) ` { v } ) )
18 1 2 17 cmpt
 |-  ( w e. _V |-> ran ( v e. ( ( Base ` w ) \ { ( 0g ` w ) } ) |-> ( ( LSpan ` w ) ` { v } ) ) )
19 0 18 wceq
 |-  LSAtoms = ( w e. _V |-> ran ( v e. ( ( Base ` w ) \ { ( 0g ` w ) } ) |-> ( ( LSpan ` w ) ` { v } ) ) )