| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clsa |
|- LSAtoms |
| 1 |
|
vw |
|- w |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vv |
|- v |
| 4 |
|
cbs |
|- Base |
| 5 |
1
|
cv |
|- w |
| 6 |
5 4
|
cfv |
|- ( Base ` w ) |
| 7 |
|
c0g |
|- 0g |
| 8 |
5 7
|
cfv |
|- ( 0g ` w ) |
| 9 |
8
|
csn |
|- { ( 0g ` w ) } |
| 10 |
6 9
|
cdif |
|- ( ( Base ` w ) \ { ( 0g ` w ) } ) |
| 11 |
|
clspn |
|- LSpan |
| 12 |
5 11
|
cfv |
|- ( LSpan ` w ) |
| 13 |
3
|
cv |
|- v |
| 14 |
13
|
csn |
|- { v } |
| 15 |
14 12
|
cfv |
|- ( ( LSpan ` w ) ` { v } ) |
| 16 |
3 10 15
|
cmpt |
|- ( v e. ( ( Base ` w ) \ { ( 0g ` w ) } ) |-> ( ( LSpan ` w ) ` { v } ) ) |
| 17 |
16
|
crn |
|- ran ( v e. ( ( Base ` w ) \ { ( 0g ` w ) } ) |-> ( ( LSpan ` w ) ` { v } ) ) |
| 18 |
1 2 17
|
cmpt |
|- ( w e. _V |-> ran ( v e. ( ( Base ` w ) \ { ( 0g ` w ) } ) |-> ( ( LSpan ` w ) ` { v } ) ) ) |
| 19 |
0 18
|
wceq |
|- LSAtoms = ( w e. _V |-> ran ( v e. ( ( Base ` w ) \ { ( 0g ` w ) } ) |-> ( ( LSpan ` w ) ` { v } ) ) ) |