Step |
Hyp |
Ref |
Expression |
1 |
|
lsatset.v |
|- V = ( Base ` W ) |
2 |
|
lsatset.n |
|- N = ( LSpan ` W ) |
3 |
|
lsatset.z |
|- .0. = ( 0g ` W ) |
4 |
|
lsatset.a |
|- A = ( LSAtoms ` W ) |
5 |
|
elex |
|- ( W e. X -> W e. _V ) |
6 |
|
fveq2 |
|- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
7 |
6 1
|
eqtr4di |
|- ( w = W -> ( Base ` w ) = V ) |
8 |
|
fveq2 |
|- ( w = W -> ( 0g ` w ) = ( 0g ` W ) ) |
9 |
8 3
|
eqtr4di |
|- ( w = W -> ( 0g ` w ) = .0. ) |
10 |
9
|
sneqd |
|- ( w = W -> { ( 0g ` w ) } = { .0. } ) |
11 |
7 10
|
difeq12d |
|- ( w = W -> ( ( Base ` w ) \ { ( 0g ` w ) } ) = ( V \ { .0. } ) ) |
12 |
|
fveq2 |
|- ( w = W -> ( LSpan ` w ) = ( LSpan ` W ) ) |
13 |
12 2
|
eqtr4di |
|- ( w = W -> ( LSpan ` w ) = N ) |
14 |
13
|
fveq1d |
|- ( w = W -> ( ( LSpan ` w ) ` { v } ) = ( N ` { v } ) ) |
15 |
11 14
|
mpteq12dv |
|- ( w = W -> ( v e. ( ( Base ` w ) \ { ( 0g ` w ) } ) |-> ( ( LSpan ` w ) ` { v } ) ) = ( v e. ( V \ { .0. } ) |-> ( N ` { v } ) ) ) |
16 |
15
|
rneqd |
|- ( w = W -> ran ( v e. ( ( Base ` w ) \ { ( 0g ` w ) } ) |-> ( ( LSpan ` w ) ` { v } ) ) = ran ( v e. ( V \ { .0. } ) |-> ( N ` { v } ) ) ) |
17 |
|
df-lsatoms |
|- LSAtoms = ( w e. _V |-> ran ( v e. ( ( Base ` w ) \ { ( 0g ` w ) } ) |-> ( ( LSpan ` w ) ` { v } ) ) ) |
18 |
2
|
fvexi |
|- N e. _V |
19 |
18
|
rnex |
|- ran N e. _V |
20 |
|
p0ex |
|- { (/) } e. _V |
21 |
19 20
|
unex |
|- ( ran N u. { (/) } ) e. _V |
22 |
|
eqid |
|- ( v e. ( V \ { .0. } ) |-> ( N ` { v } ) ) = ( v e. ( V \ { .0. } ) |-> ( N ` { v } ) ) |
23 |
|
fvrn0 |
|- ( N ` { v } ) e. ( ran N u. { (/) } ) |
24 |
23
|
a1i |
|- ( v e. ( V \ { .0. } ) -> ( N ` { v } ) e. ( ran N u. { (/) } ) ) |
25 |
22 24
|
fmpti |
|- ( v e. ( V \ { .0. } ) |-> ( N ` { v } ) ) : ( V \ { .0. } ) --> ( ran N u. { (/) } ) |
26 |
|
frn |
|- ( ( v e. ( V \ { .0. } ) |-> ( N ` { v } ) ) : ( V \ { .0. } ) --> ( ran N u. { (/) } ) -> ran ( v e. ( V \ { .0. } ) |-> ( N ` { v } ) ) C_ ( ran N u. { (/) } ) ) |
27 |
25 26
|
ax-mp |
|- ran ( v e. ( V \ { .0. } ) |-> ( N ` { v } ) ) C_ ( ran N u. { (/) } ) |
28 |
21 27
|
ssexi |
|- ran ( v e. ( V \ { .0. } ) |-> ( N ` { v } ) ) e. _V |
29 |
16 17 28
|
fvmpt |
|- ( W e. _V -> ( LSAtoms ` W ) = ran ( v e. ( V \ { .0. } ) |-> ( N ` { v } ) ) ) |
30 |
5 29
|
syl |
|- ( W e. X -> ( LSAtoms ` W ) = ran ( v e. ( V \ { .0. } ) |-> ( N ` { v } ) ) ) |
31 |
4 30
|
eqtrid |
|- ( W e. X -> A = ran ( v e. ( V \ { .0. } ) |-> ( N ` { v } ) ) ) |