Metamath Proof Explorer


Theorem islsat

Description: The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses lsatset.v V=BaseW
lsatset.n N=LSpanW
lsatset.z 0˙=0W
lsatset.a A=LSAtomsW
Assertion islsat WXUAxV0˙U=Nx

Proof

Step Hyp Ref Expression
1 lsatset.v V=BaseW
2 lsatset.n N=LSpanW
3 lsatset.z 0˙=0W
4 lsatset.a A=LSAtomsW
5 1 2 3 4 lsatset WXA=ranxV0˙Nx
6 5 eleq2d WXUAUranxV0˙Nx
7 eqid xV0˙Nx=xV0˙Nx
8 fvex NxV
9 7 8 elrnmpti UranxV0˙NxxV0˙U=Nx
10 6 9 bitrdi WXUAxV0˙U=Nx