Metamath Proof Explorer


Theorem lsatlspsn2

Description: The span of a nonzero singleton is an atom. TODO: make this obsolete and use lsatlspsn instead? (Contributed by NM, 9-Apr-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses lsatset.v V = Base W
lsatset.n N = LSpan W
lsatset.z 0 ˙ = 0 W
lsatset.a A = LSAtoms W
Assertion lsatlspsn2 W LMod X V X 0 ˙ N X A

Proof

Step Hyp Ref Expression
1 lsatset.v V = Base W
2 lsatset.n N = LSpan W
3 lsatset.z 0 ˙ = 0 W
4 lsatset.a A = LSAtoms W
5 3simpc W LMod X V X 0 ˙ X V X 0 ˙
6 eldifsn X V 0 ˙ X V X 0 ˙
7 5 6 sylibr W LMod X V X 0 ˙ X V 0 ˙
8 eqid N X = N X
9 sneq v = X v = X
10 9 fveq2d v = X N v = N X
11 10 rspceeqv X V 0 ˙ N X = N X v V 0 ˙ N X = N v
12 7 8 11 sylancl W LMod X V X 0 ˙ v V 0 ˙ N X = N v
13 1 2 3 4 islsat W LMod N X A v V 0 ˙ N X = N v
14 13 3ad2ant1 W LMod X V X 0 ˙ N X A v V 0 ˙ N X = N v
15 12 14 mpbird W LMod X V X 0 ˙ N X A