Metamath Proof Explorer


Theorem lsatlspsn2

Description: The span of a nonzero singleton is an atom. TODO: make this obsolete and use lsatlspsn instead? (Contributed by NM, 9-Apr-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses lsatset.v V=BaseW
lsatset.n N=LSpanW
lsatset.z 0˙=0W
lsatset.a A=LSAtomsW
Assertion lsatlspsn2 WLModXVX0˙NXA

Proof

Step Hyp Ref Expression
1 lsatset.v V=BaseW
2 lsatset.n N=LSpanW
3 lsatset.z 0˙=0W
4 lsatset.a A=LSAtomsW
5 3simpc WLModXVX0˙XVX0˙
6 eldifsn XV0˙XVX0˙
7 5 6 sylibr WLModXVX0˙XV0˙
8 eqid NX=NX
9 sneq v=Xv=X
10 9 fveq2d v=XNv=NX
11 10 rspceeqv XV0˙NX=NXvV0˙NX=Nv
12 7 8 11 sylancl WLModXVX0˙vV0˙NX=Nv
13 1 2 3 4 islsat WLModNXAvV0˙NX=Nv
14 13 3ad2ant1 WLModXVX0˙NXAvV0˙NX=Nv
15 12 14 mpbird WLModXVX0˙NXA